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Abstract—The bandwidth of a bandlimited signal is an im-
portant number that is relevant in many applications and
concepts. For example, according to the Shannon sampling
theorem, the bandwidth determines the minimum sampling rate
that is required for a perfect reconstruction. In this paper we
consider bandlimited signals with finite energy and bandlimited
signals that are absolutely integrable and analyze whether the
bandwidth of these signals can be determined algorithmically.
We employ the concept of Turing computability, a theoretical
model that describes the fundamental limits of what can be
solved algorithmically on a digital hardware, and ask if, for a
given computable bandlimited signal, it is possible to compute its
bandwidth on a Turing machine. We show that this is not possible
in general, because there exist computable bandlimited signals for
which the bandwidth is a non-computable real number. Even the
weaker question if the bandwidth of a given signal is smaller than
a predefined value cannot be always answered algorithmically.
Further, we prove that in the case where the bandwidth in not
computable, it is even impossible to algorithmically determine a
sequence of upper bounds that converges to the actual bandwidth
of the signal. As a positive result, we show that the set of
signals whose bandwidth is larger than some given value is semi-
decidable.

Index Terms—Bandlimited signal, bandwidth, minimum sam-
pling rate, algorithmic solvability, Turing computability

I. INTRODUCTION

BANDLIMITED signals are important in many applica-
tions [2]–[5]. In information theory and signal processing

they provide a mathematical framework, in which it is possi-
ble to convert analog continuous-time signals into discrete-
time signals without a loss of information [6]–[8]. Further,
bandlimited signals play an important role in the theory of
system approximation processes [9], [10] and in wireless
communication systems, where the spectrum of the transmit
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Algorithm
TM

Data f

Desired approximation error ε

Output: TM(f, ε) such that
‖TM(f, ε)− "true solution"‖ < ε

Fig. 1. The algorithm TM gets two inputs: the data f and the desired
approximation error ε.

signal has to be confined to certain bands, in order not to
disturb other users [11], [12].

The actual bandwidth B(f) of a bandlimited signal f ,
i.e., the smallest number σ such that f is bandlimited with
bandwidth σ, is a relevant quantity in information theory and
signal processing [13]–[17], because it is directly linked to
the smallest sampling rate rmin that is needed in order that the
sequence of samples {f(k/rmin)}k∈Z uniquely determines f .
According to Shannon’s famous sampling theorem [6], [18],
a bandlimited signal f with finite energy can be reconstructed
from its samples {f(k/r)}k∈Z, by means of the Shannon
sampling series, if r ≥ rmin = B(f)/π. The sequence
of samples {f(kπ/B(f))}k∈Z can therefore be seen as a
minimum representation of the signal f . Finding minimum
representations of bandlimited signals is essential for the
digital transformation and information theory, where it is
crucial to know whether a chosen sampling rate is sufficient
to completely describe a signal [19]. In information theory,
the minimum, i.e., Nyquist sampling rate, is also the basis for
the interpolation of discrete-time independent and identically
distributed random variables [7], [8]. The Nyquist rate is the
largest sampling rate such that the samples of the signal can be
chosen independently. For any larger sampling rate, i.e., with
oversampling, there are dependencies between the samples.

Digital computers are widely used for various tasks. In
this paper we study whether the bandwidth of a computable
bandlimited signal can always be determined algorithmically
on a digital computer. To this end we employ the concept of
Turing computability, a theoretical model that describes the
fundamental limits of computation on a digital computer.

It is known that there exist problems that cannot be solved
on a digital computer, e.g., the computation of the Fourier
transform for certain signals [20], [21] or the spectral factoriza-
tion [22]. For these signals, a digital computer cannot produce,
for every desired error, a result within the error margin, i.e.,
the approximation error cannot be controlled.

Today, most simulations are done without explicitly treating
the approximation error. This, for example, can be observed
in the absence of error bars in plots. In those cases, the
computer computes an approximation of the solution, however,
without any quality guarantees. Such quality guarantees, in the
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form of an algorithmic control of the approximation error, are
exactly provided by the concept of computability. In addition
to the data f , the desired approximation error ε, which could
be the maximum tolerable error, is given as an input to the
algorithm. The computer continues its computations until it
has produced a solution that satisfies this error specification.
This algorithmic control of the error is illustrated in Fig. 1.

In this paper we will study the algorithmic computability of
the actual bandwidth B(f) of computable bandlimited signals.
In particular, we will analyze and answer the questions:
• Question 1: Is B(f) always computable?
• Question 2: Can we algorithmically compute asymptoti-

cally sharp lower bounds for B(f)?
• Question 3: Can we algorithmically compute asymptoti-

cally sharp upper bounds for B(f)?
In terms of sampling rate, those questions read: Is the optimal,
i.e. minimum required sampling rate always computable? Can
we compute lower bounds for the minimum required sampling
rate? Can we compute upper bounds for the minimum required
sampling rate?

In Section II we introduce the basic concepts of com-
putability theory and the facts that are relevant for us, and,
in Section III, the essentials about bandlimited signals are
presented. In Section IV we define computable bandlimited
signals. Our first main result is given in Section V, where we
prove for the signal spaces B1π and B2π that Question 1 has to
be answered in the negative. In Section VI we analyze whether
it is possible to algorithmically detect the signals f for which
B(f) is not computable. Again, the answer is no. Then in
Section VII we study the semi-decidability of certain sets. We
show that it is always possible to algorithmically detect if the
actual bandwidth of a signal B(f) is larger than a predefined
value. The opposite problem, however, to detect if the actual
bandwidth of a signal B(f) is smaller than a predefined value,
cannot always be solved algorithmically. In VIII we analyze
Questions 2 and 3. It will turn out that Question 2 can be
answered positively, while Question 3 has to be answered in
the negative. Finally, we conclude the paper in Section IX with
a discussion and further open problems in Section X.

II. GENERAL ALGORITHMS AND COMPUTABILITY

The theory of computability is a well-established field in
computer sciences [23]–[27]. However, since computability
is less well known in the information theory community, we
describe some of the key concepts in this section. For a more
detailed treatment of the topic, see for example [25]–[28].

In order to study the question of computability, we employ
the concept of Turing computability. A Turing machine is an
abstract device that manipulates symbols on a strip of tape
according to certain rules [23]–[25], [27]. Although the con-
cept is very simple, a Turing machine is capable of simulating
any given algorithm. Turing machines have no limitations
in terms of memory or computing time, and hence provide
a theoretical model that describes the fundamental limits of
any practically realizable digital computer. Moreover, Turing
machines are equivalent to other concepts of computability,
such as those defined by general recursive functions, Minsky

register machines, and λ-calculus [27], [29]. It will become
clear that Turing computability is exactly the concept that
characterizes what can be theoretically achieved by digital
hardware, e.g., central processing units (CPUs), digital sig-
nal processors (DSPs), or field programmable gate arrays
(FPGAs), if practical limitations, such as energy constraints,
computing errors, and hardware restrictions, are disregarded.

It is important to distinguish Turing computability from
complexity theory, another topic in computer science. Com-
plexity theory deals with the question of how efficiently a
problem can be solved, and analyzes how the computation
time of a given algorithm scales with the size of the input
data. Thus, the goal of complexity theory is different from the
goal in Turing computability, where the fundamental limits of
computability are explored, without consideration of complex-
ity issues. Further, complexity theory operates in a discrete and
finite setting. However, in the modeling of many real world
problems continuous signals are used, e.g., bandlimited signals
that have an infinite duration. Thus, in order to be able to
apply complexity theory on such “continuous problems”, it
is necessary that the continuous signals can be approximated
by discrete and finite signals in a controlled way, where the
approximation error is Turing computable.

A recursive function is a function, mapping natural numbers
into natural numbers, that is built of simple computable
functions and recursions. We will not go into details here,
for further information on recursive functions see for example
[30]. For us it is important that recursive functions are com-
putable by a Turing machine. A setA ⊆ N is called recursively
enumerable if A = ∅ or A is the range of a recursive function.
A set A ⊆ N is called recursive if both A and N \ A are
recursively enumerable.

Definition 1. We say that a set A ( N is a recursively
enumerable non-recursive set, if A is recursively enumerable
but not recursive, i.e., if A is recursively enumerable but N\A
is not recursively enumerable.

Such recursively enumerable non-recursive sets exist [30,
4.4 Proposition, p. 19] and will be of great importance for the
results in this paper. For every recursively enumerable non-
recursive set A ( N, there exists a recursive enumeration of
A, i.e., a recursive function φA : N→ A that is surjective and
injective.

Alan Turing introduced the concept of a computable real
number in [23], [24]. Our definition of a computable real
number is based on computable sequences of rational numbers.

Definition 2. A sequence of rational numbers {rn}n∈N is
called computable sequence if there exist recursive functions
a, b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

Definition 3. A real number x is said to be computable if there
exist a computable sequence of rational numbers {rn}n∈N and
a recursive function ξ : N → N such that for all N ∈ N we
have |x− rn| ≤ 2−N for all n ≥ ξ(N). By Rc we denote the
set of computable real numbers and by Cc = Rc+ iRc the set
of computable complex numbers.
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Note that the recursive, i.e., computable function ξ allows
us to control the approximation error algorithmically. This
form of convergence, where we have a computable control
of the approximation error is called effective convergence. Rc
is a field, i.e., finite sums, differences, products, and quotients
of computable numbers are computable. Note that commonly
used constants like e and π are computable. A non-computable
real number was for example constructed in [31].

In this paper, the series
∞∑
k=1

1

2φA(k)
,

where A ( N is a recursively enumerable non-recursive set,
will play an important role. We discuss the relevant properties
next. First, note that

al =
l∑

k=1

1

2φA(k)
≤

l∑
k=1

1

2k
(1)

for all l ∈ N, because the numbers {φA(k) : k = 1, . . . , l} in
general differ from the numbers {1, . . . , l}, which maximize
the sum on the right-hand side of (1). Therefore, we see that

∞∑
k=1

1

2φA(k)
≤
∞∑
k=1

1

2k
= 1. (2)

Hence, {al}l∈M is a monotonically increasing and bounded
sequence of real numbers. According to the monotone con-
vergence theorem, this sequence has a well-defined limit

ω∗ = lim
l→∞

al =

∞∑
k=1

1

2φA(k)
,

where ω∗ ∈ R. However, it can be shown that ω∗ 6∈ Rc [26,
Corollary 2b, p. 20]. This fact will be important for us.

Lemma 1. We have ω∗ 6∈ Rc, i.e., ω∗ is a non-computable
real number.

There are several—not equivalent—definitions of com-
putable functions, most notably, computable continuous func-
tions, Turing computable functions, Markov computable func-
tions, and Banach–Mazur computable functions [28]. An ex-
ample of a function, which is not Turing computable was given
in [32]. A function that is computable with respect to any of
the above definitions, has the property that it maps computable
numbers into computable numbers. This property is therefore
a necessary condition for computability. Usual functions like
sin, sinc, log, and exp are computable with respect to all
above definitions, and finite sums of computable functions are
computable [26].

We will use a definition of a computable function that is
based on the idea of effective approximation. As atoms in
the approximation we use very basic functions that are com-
putable. A more complicated function f is called computable if
it can be effectively approximated by finite linear combinations
of the atoms, or, in other words, if there exists an algorithm
that, for every approximation error ε > 0, can compute, in
a finite number of steps, an approximation of f by using
only finite linear combinations of the atoms, such that the
approximation error is guaranteed to be less than ε.

III. BANDLIMITED SIGNALS

Next, we introduce the necessary definitions. In Ap-
pendix A, a list of all important symbols and sets is included.
For Ω ⊆ R, let Lp(Ω), 1 ≤ p < ∞, be the space of
all measurable, pth-power Lebesgue integrable functions on
Ω, with the usual norm ‖ · ‖p, and L∞(Ω) the space of all
functions for which the essential supremum norm ‖ · ‖∞ is
finite [33].

A function f is said to be entire if it is defined and
holomorphic on all of C. We employ the usual definition
of a bandlimited function that is based on entire functions.
Recently, generalizations have been proposed, for example, in
[34], where the notion of variable bandwidth was studied.

Definition 4. An entire function f is called bandlimited with
bandwidth 0 ≤ σ <∞ if for all ε > 0 there exists a constant
C(ε) with

|f(z)| ≤ C(ε) e(σ+ε)|z| (3)

for all z ∈ C [18], [35]. By Bσ we denote the set of all entire
functions that are bandlimited with bandwidth σ.

Note that, according to this definition, f ∈ Bσ1 implies that
f ∈ Bσ2 for all σ2 ≥ σ1. Thus, a signal that is bandlimited
with bandwidth σ1 is also bandlimited with any bandwidth σ2
larger than σ1. For a given bandlimited signal f we denote by

B(f) = min{σ ≥ 0: f ∈ Bσ}

the minimum bandwidth of the signal f , which we will call
the actual bandwidth of the signal f in the following. In
Appendix B, we will prove that this minimum always exist.

Definition 5. The Bernstein space Bpσ , σ ≥ 0, 1 ≤ p ≤ ∞,
consists of all functions in Bσ , whose restriction to the real
line is in Lp(R) [18, p. 49]. The norm for Bpσ is given by the
Lp-norm on the real line, i.e., by

‖f‖Bpσ =

(∫ ∞
−∞
|f(t)|p dt

) 1
p

.

B∞σ,0 denotes the space of all functions in B∞σ that vanish on
the real axis at infinity.

Remark 1. We have Brσ ⊆ Bsσ ⊆ B∞σ,0 for all 1 ≤ r ≤ s <∞.

Let f̂ denote the Fourier transform of a signal f . For f ∈
L1(R), we have

f̂(ω) =

∫ ∞
−∞

f(t) e−iωt dt.

For f ∈ L2(R) the Fourier transform is defined in L1 and
extended canonically to L2. For f ∈ Lp(R), p > 2, more
refined definitions that are based on distribution theory have
to be employed [36].
B2σ is the frequently used space of bandlimited signals with

finite energy. According to the Paley–Wiener theorem [18,
Theorem 7.2, p. 68], the support of the Fourier transform f̂
of a signal f ∈ B2σ is contained in [−σ, σ], and we have

f(t) =
1

2π

∫ σ

−σ
f̂(ω) eiωt dω.
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Hence, for the space B2σ we have a further, different charac-
terization of the actual bandwidth. For f ∈ B2σ , B(f) is the
smallest number η > 0 such that

f(t) =
1

2π

∫ η

−η
f̂(ω) eiωt dω (4)

for all t ∈ R. According to Plancherel’s identity, this is also
the smallest η > 0 such that∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ η

−η
|f̂(ω)|2 dω. (5)

For spaces other than B2σ , the characterizations of the actual
bandwidth via (4) and (5) get mote involved, since, in general,
the Fourier transform has to be defined via distributions.
However, for the space B1σ we still have the characterizations
(4) and (5).

The actual bandwidth B(f) of a bandlimited signal f is
a distinguished quantity, because it determines the minimum
sampling rate that is required so that the samples uniquely
determine f . This follows, as we will see, directly from
the Plancherel–Pólya inequality [35, p. 152]. Without loss of
generality, we consider σ = π, i.e., signals that are bandlimited
to π, in the following.

Theorem (Plancherel–Pólya). Let 1 < p < ∞. Then there
exist two constants CL > 0 and CR > 0, depending only on
p, such that for all f ∈ Bpπ we have

CL

( ∞∑
k=−∞

|f(k)|p
) 1
p

≤ ‖f‖p ≤ CR

( ∞∑
k=−∞

|f(k)|p
) 1
p

. (6)

According to the Plancherel–Pólya inequality, for signals
f ∈ Bpπ , 1 < p < ∞, Z is a set of uniqueness, i.e., f
is uniquely determined by its samples {f(k)}k∈Z. Further,
the right inequality of (6) implies that Z is a set of stable
sampling [37]–[39]. Z is also a set of interpolation for Bpπ ,
1 < p < ∞, because for every sequence α = {αk}k∈Z ∈ `p
we can find a signal f ∈ Bpπ such that f(k) = αk for all k ∈ Z.
If the sampling rate is reduced below the critical Nyquist
rate, i.e., if sampling points aZ with a > 1 are considered,
then aZ is no longer a set of uniqueness for signals in Bpπ ,
1 < p < ∞, in general. We give the proof of this fact in
Appendix C. Hence, for signals f with arbitrary bandwidth
σ > 0, it follows that B(f) is the smallest number such
that the sequence of samples {f(kπ/B(f))}k∈Z completely
determines f ∈ Bpσ , 1 < p < ∞. That is, B(f) determines
the optimum sampling rate, and consequently the minimum
storage rate that is required to reconstruct f .

The Plancherel–Pólya inequality couples the continuous
Lp-norm of a bandlimited signal with the discrete `p-norm
of its samples and therefore is an ideal tool to study the
conversion from the continuous-time domain into the discrete-
time domain and vice versa. Both are essential steps in the
digital transformation, where analog signals are processed in
the digital domain. The coupling of the norms can be used
to prove the convergence of the Shannon sampling series. For
f ∈ Bpπ , 1 < p <∞, the Shannon sampling series

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)

−8 −6 −4 −2 0 2 4 6 8
−0.5

0

0.5

1

computable signal
sinc functions
approximation

Fig. 2. Approximation of a computable signal (solid red) by an elementary
computable function (dashed green). The elementary computable function
(dashed green) is the finite sum of five sinc functions (dotted blue). The
approximation error is indicated by the gray area.

converges to f in the Bpπ-norm, as can be easily seen: For
N1 > N2 we have(∫ ∞

−∞

∣∣∣∣∣
N1∑

k=−N1

f(k)
sin(π(t− k))

π(t− k)

−
N2∑

k=−N2

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
p

dt

) 1
p

≤ CR

( ∑
N2<|k|≤N1

|f(k)|p
) 1
p

,

where we used the Plancherel–Pólya inequality. Since
{f(k)}k∈Z ∈ `p, it follows that{

N∑
k=−N

f(k)
sin(π( · − k))

π( · − k)

}
N∈N

is a Cauchy sequence in Bpπ . This implies that the Shannon
sampling sequence converges to f in the Bpπ-norm.

IV. COMPUTABLE BANDLIMITED SIGNALS

Before we come to our main result, we need to introduce
the concept of a computable function in a Banach space. The
definition will employ the idea of effective approximability
that was introduced at the end of Section II. In order to
be more specific, we discuss computability in the context of
bandlimited signals for the spaces Bpπ , p ∈ [1,∞) ∩ Rc and
B∞π,0.

Definition 6. We call a function f elementary computable if
there exists a natural number L and a sequence of computable
numbers {αk}Lk=−L such that

f(t) =
L∑

k=−L
αk

sin(π(t− k))

π(t− k)
. (7)

The building blocks of an elementary computable function
are sinc functions. Hence, elementary computable functions
are exactly those functions that can be represented by a
finite Shannon sampling series with computable coefficients
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{αk}Lk=−L. Note that every elementary computable function
f is a finite sum of computable continuous functions and
hence a computable continuous function. As a consequence,
for every t ∈ Rc the number f(t) is computable. Further,
the sum of finitely many elementary computable functions is
elementary computable, as well as the product of an elemen-
tary computable function with a computable number λ ∈ Cc.
Hence, the set of elementary computable functions is closed
with respect to the operations addition and multiplication with
a scalar. Further, for every elementary computable function f ,
the norm ‖f‖Bpπ , p ∈ (1,∞)∩Rc, is a computable real number.

Definition 7. A signal in f ∈ Bpπ , p ∈ [1,∞) ∩ Rc, is called
computable in Bpπ if there exists a computable sequence of
elementary computable functions {fn}n∈N and a recursive
function ξ : N→ N such that for all N ∈ N we have

‖f − fn‖Bpπ ≤
1

2N
(8)

for all n ≥ ξ(N). We use the same definition for signals in
B∞π,0. By CBpπ , p ∈ [1,∞)∩Rc, we denote the set of all signals
in Bpπ that are computable in Bpπ , and by CB∞π,0 the set of all
signals in B∞π,0 that are computable in B∞π,0.

According to this definition we can approximate any signal
f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, by an elementary computable
signal, where we have an “effective”, i.e. computable control
of the approximation error. For every prescribed approximation
error ε > 0, ε ∈ Rc, we can compute an index N =
d− log2(ε)e such that the approximation error ‖f − fn‖Bpπ
is less than or equal to ε for all n ≥ ξ(N). Hence, the
type of convergence that we have in (8) is called effective
convergence. In Fig. 2 the approximation of a computable
signal by an elementary computable signal is illustrated. Note
that CBpπ , p ∈ [1,∞)∩Rc, and CB∞π,0 have a linear structure.

Remark 2. Due to the inequality∣∣‖f‖Bpπ − ‖fn‖Bpπ ∣∣ ≤ ‖f − fn‖Bpπ ,
it follows immediately that the norm ‖f‖Bpπ is a computable
real number for all f ∈ CBpπ , p ∈ [1,∞) ∩ Rc. See also [26,
pp. 40].

Since, for f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, we have

|f(t)| ≤

( ∞∑
k=−∞

|f(t+ k)|p
) 1
p

≤ (1 + π)‖f‖Bpπ

for all t ∈ R, where we used Nikol’skiı̆’s inequality [18, p. 49]
in the last inequality, we see that

‖f‖∞ ≤ (1 + π)‖f‖Bpπ (9)

for all f ∈ CBpπ , p ∈ [1,∞) ∩ Rc. Hence, the pointwise ap-
proximation error is smaller than or equal to the approximation
error measured in the Bpπ-norm. This means that we can also
control the pointwise approximation error.

We can use inequality (9) to obtain the following fact about
relation of the sets CBpπ , p ∈ [1,∞) ∩ Rc, and CB∞π,0.

Fact 1. If f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, then we also have
f ∈ CB∞π,0.

Proof. Let f ∈ CBpπ , p ∈ [1,∞] ∩ Rc. Then there exists
a computable sequence of elementary computable functions
{fn}n∈N such that limn→∞‖f − fn‖Bpπ = 0, where the
convergence is effective. Due to (9), {fn}n∈N also converges
effectively to f in the B∞π,0-norm, which implies that f ∈
CB∞π,0.

In order to have a meaningful definition of a computable
signal in Bpπ , p ∈ (1,∞) ∩ Rc, it is necessary that each
f ∈ Bpπ can be approximated in a classical sense by a linear
combination of shifted sinc-functions. This is assured by the
next fact. Note that for p = 2 the fact is just the statement
of the Shannon sampling theorem. For the general theory, i.e.,
p 6= 2, see, for example, [35, Theorem 3, p. 152].

Fact 2. Let f ∈ Bpπ , p ∈ (1,∞). For every ε > 0 there exists
an L ∈ N and numbers {αk}Lk=−L such that∥∥∥∥∥f −

L∑
k=−L

αk
sin(π( · − k))

π( · − k)

∥∥∥∥∥
Bpπ

< ε.

Remark 3. The case p = 1 is special, because the sinc function
is not in L1(R). Hence, it is not obvious how to find a sequence
of elementary computable functions that approximates f ∈ B1π
in the B1π-norm. For L ∈ N, consider, for example, the function

fL(t) =
L∑

k=−L
f(k)

sin(π(t− k))

π(t− k)

−

(
L∑

k=−L
f(k)(−1)k

)
sin(πt)

πt

=
L∑

k=−L
f(k)(−1)k sin(πt)

k

π(t− k)t
, (10)

where in the second equality we used that sin(π(t − k)) =
(−1)k sin(πt) for all t ∈ R, k ∈ Z. Clearly, fL is an
elementary computable function, having the shape

L∑
k=−L

αk
sin(π(t− k))

π(t− k)
,

with {αk}Lk=−L given by

αk =

{
f(0)−

∑L
k=−L f(k)(−1)k, k = 0,

f(k), otherwise.

Further, from (10) we see that fL ∈ B1π . Thus, {fL}L∈N is
a computable sequence of elementary computable functions
in B1π . Note however, this sequence does not necessarily
converge to f . For us in this paper this is not a problem. We
are interested in the algorithmic computability of the actual
bandwidth B(f) for a suitable class of computable bandlimited
signals. For 1 < p < ∞ there are no problems when using
elementary computable functions for the approximation. For
p = 1, according to the definition of a computable signal in
B1π , we only consider those signals in B1π that can be effec-
tively approximated by computable sequences of elementary
computable functions. In other words, we restrict ourselves
to signals that are “generated” by elementary computable
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functions. It could be mathematically interesting to consider
larger classes of elementary functions, which would in turn
lead to larger sets of computable signals. However, this is not
our concern and even if doing so, our results would not be
affected. We will show that the there exists a signal f ∈ CB1π
such that B(f) is not computable. This problem will clearly
also exist for all potential extensions of the set CB1

π .

The following two facts are useful for the analysis of
computability.

Fact 3. Let f ∈ CB1π . Then the Fourier transform f̂ is a
computable continuous function.

The proof of Fact 3 will be given at the beginning of the
proof of Theorem 4.

Fact 4. Let {fn}n∈N be a computable sequence of computable
functions in Bpπ , p ∈ [1,∞) ∩ Rc. If {fn}n∈N converges
effectively to a limit f in the Bpπ-norm, then we have f ∈ CBpπ ,
i.e., f is computable in Bpπ .

Proof. Since {fn}n∈N converges effectively to f in the Bpπ-
norm, there exists a recursive function ξ : N → N such that
for all N ∈ N we have

‖f − fn‖Bpπ ≤ 2−N

for all n ≥ ξ(N). For N ∈ N let gN = fξ(N+1). Then
{gN}N∈N is a computable sequence of computable functions
in Bpπ with

‖f − gN‖Bpπ ≤
1

2N+1
.

Moreover, since {gN}N∈N is computable sequence of com-
putable functions in Bpπ , we can find, using the same argu-
ments, a computable double sequence of elementary com-
putable functions {gN,m}N∈N,m∈N with

‖gN − gN,m‖Bpπ ≤
1

2m+1
.

Hence, for N ∈ N and m = N we have

‖gN − gN,N‖Bpπ ≤
1

2N+1
.

It follows that

‖f − gN,N‖Bpπ ≤ ‖f − gN‖Bpπ + ‖gN − gN,N‖Bpπ
≤ 1

2N+1
+

1

2N+1

=
1

2N

for all N ∈ N. Since {gN,N}N∈N is a computable sequence of
elementary computable functions, the proof is complete.

Finally, we also need to define computability for mappings
that map computable signals into real numbers.

Definition 8. We say that a mapping Γ: CBpπ → Rc, p ∈
[1,∞) ∩ Rc, is computable if there exists a Turing machine
that, for every input f ∈ CBpπ , can compute Γ(f).

V. COMPUTABILITY OF THE MINIMUM BANDWIDTH

In this section we analyze for signals in spaces B1π and B2π
whether it is possible to determine their actual bandwidth algo-
rithmically, i.e., we study Question 1 from the introduction. To
this end, we need to restrict ourselves to computable signals,
i.e., signals in the spaces CB1

π and CB2
π . Hence, we rephrase

the question.
• Question 1A: Does there exist an algorithm that, for every

computable signal f ∈ CB1π (or f ∈ CB2π), is able to
compute B(f)?

This question is practically relevant, since the actual band-
width B(f) of a bandlimited signal f is an important quantity.
For example, it is directly linked to the minimum sampling rate
in various sampling theorems, for details see above.

A necessary condition for the existence of such an algo-
rithm is that the mapping B maps computable functions into
computable numbers. Hence, the next question is weaker than
Question 1A.
• Question 1B: Do we have B(f) ∈ Rc for all f ∈ CB1π

(or f ∈ CB2π)?

Remark 4. The claim in Question 1B is indeed weaker than
the claim in Question 1A. If the answer to Question 1B was
“yes” then, for every signal f , B(f) would be a computable
number; and, being a computable number, there would exist
some algorithm that computes the computable number B(f)
with arbitrary precision. However, this would not mean that
we can find an algorithm that recursively depends on f , i.e., an
algorithm that takes an arbitrary f as input and then computes
B(f). If the answer to Question 1A was “yes”, then exactly
this would be possible, i.e., we could find such an algorithm
that recursively depends on f .

We first study Question 1B for signals f ∈ CB2π . Then we
study the same question for f ∈ CB1π . In both cases we have
to answer Question 1B, and consequently Question 1A in the
negative.

Theorem 1. There exists a signal f1 ∈ CB2π such that B(f1) 6∈
Rc, i.e., B(f1) is not Turing computable.

Remark 5. The fact that we have B(f1) 6∈ Rc shows that the
most basic requirement for the computability of a function—
the property that computable objects are mapped into com-
putable objects—is not satisfied. Hence, Question 1A has to
be answered in the negative for CB2

π .

For the signal f1, which we will construct in the proof of
Theorem 1, we cannot compute any of the sampling points

kπ

B(f1)
, k ∈ Z, k 6= 0.

If we could compute

λ =
k1π

B(f1)

for some k1 ∈ Z, k1 6= 0, then we could compute

B(f1) =
k1π

λ
,

because λ ∈ Rc. But that would be a contradiction.
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Proof of Theorem 1. Let A ( N be a recursively enumerable
nonrecursive set, and φA : N→ A a recursive enumeration of
the elements of A, where φA is a one-to-one function, i.e.,
for every element m ∈ A there exists exactly one k ∈ N with
φA(k) = m. For l ∈ N, let

al =
l∑

k=1

1

2φA(k)
.

We have al < al+1 < 1, l ∈ N, and

ω∗ := lim
l→∞

al =
∞∑
k=1

1

2φA(k)
.

is a non-computable real number, according to Lemma 1. We
set

f1(t) =
∞∑
l=1

1

2l
sin(al(t− l))
π(t− l)

, t ∈ R.

The Fourier transform of f1 is given by

f̂1(ω) =
∞∑
l=1

1

2l
e−ilω rectal(ω),

where

rectal(ω) =

{
1, |ω| < al,

0, |ω| ≥ al.

Further, we have

‖f1‖B2
π
≤
∞∑
l=1

1

2l

∥∥∥∥ sin(al( · − l))
π( · − l)

∥∥∥∥
B2
π

=
∞∑
l=1

1

2l

√
al
π

<
∞∑
l=1

1

2l

= 1

<∞,

where we used the fact that al < 1, l ∈ N, in the second
inequality. Since, as we show in Appendix D,

sin(al(t− k))

π(t− k)

is a computable function in B2π for all l ∈ N, and∥∥∥∥∥f1 −
M∑
l=1

1

2l
sin(al( · − l))
π( · − l)

∥∥∥∥∥
B2
π

≤
∞∑

l=M+1

1

2l

√
al
π

<
∞∑

l=M+1

1

2l

=
1

2M+1

1

1− 1
2

=
1

2M
,

we see that the computable sequence{
M∑
l=1

1

2l
sin(al( · − l))
π( · − l)

}∞
M=1

of computable functions in B2π converges effectively in the
B2π-norm, and hence that f1 is computable in B2π . For ω ∈
(−∞,−ω∗]∪ [ω∗,∞), we have f̂1(ω) = 0 almost everywhere.
Therefore, we see that

B(f1) ≤ ω∗. (11)

Let k ∈ N be arbitrary. For ω ∈ (ak, ak+1) we have

f̂1(ω) =
∞∑

l=k+1

1

2l
e−ilω =

e−i(k+1)ω

2k+1

1

1− eiω

2

,

which implies that |f̂1(ω)| > 0 for all ω ∈ (ak, ak+1). Thus,
we see that B(f1) ≥ ak+1. Since this is true for all k ∈ N, it
follows that

B(f1) ≥ ω∗. (12)

Combining (11) and (12), we obtain that B(f1) = ω∗, which
implies that B(f1) 6∈ Rc.

Next, we present an alternative proof, which is based on the
construction of a different signal. While the signal f1 in the
previous proof had a simple time domain structure in the form
of a Shannon sampling series, the signal f2 in the following
proof is particularly simple in the frequency domain.

Remark 6. For t ∈ R, let

f2(t) =

∞∑
l=1

1

l2

(
sin(al(t− l))
π(t− l)

− sin(al+1(t− l))
π(t− l)

)
. (13)

Similar as before, it is shown that f2 ∈ B2π , and that the
series in (13) converges effectively. This shows that f2 ∈ CB2π .
For ω ∈ (−∞,−ω∗] ∩ [ω∗,∞), we have f̂2(ω) = 0 almost
everywhere. Hence, we see that

B(f2) ≤ ω∗. (14)

Let k ∈ N be arbitrary. For ω ∈ (ak, ak+1) we have

f̂2(ω) =
1

k2
e−ikω,

which implies that |f̂2(ω)| > 0 for all ω ∈ (ak, ak+1). Thus,
we see that B(f2) ≥ ak+1. Since this is true for all k ∈ N, it
follows that

B(f2) ≥ ω∗. (15)

Combining (14) and (15), it follows that B(f2) = ω∗, and
consequently that B(f2) 6∈ Rc.

The next result is similar to Theorem 1, however, the
signal space is different. In the following theorem we consider
computable signals in B1π .

Theorem 2. There exists a signal f3 ∈ CB1π such that B(f3) 6∈
Rc, i.e., B(f3) is not Turing computable.

Proof. Let A ( N be a recursively enumerable nonrecursive
set, and φA : N→ A a recursive enumeration of the elements
of A. As in the proof of Theorem 1, we set

al =
l∑

k=1

1

2φA(k)
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and

ω∗ := lim
l→∞

al =
∞∑
k=1

1

2φA(k)
.

For δ > 0, let

gδ(t) =
1

2π

∫ δ

−δ

(
1− |ω|

δ

)
eiωt dω

=
δ

2π

(
sin( δt2 )

δt
2

)2

, t ∈ R. (16)

The second equality in (16) can be obtained by partial inte-
gration. A direct calculation shows that∫ ∞

−∞
|gδ(t)| dt =

δ

2π

∫ ∞
−∞

(
sin( δt2 )

δt
2

)2

dt

=
δ

(2π)2

∫ δ/2

−δ/2

(
2π

δ

)2

dω

= 1. (17)

For l ∈ N, we set

q̂l(ω) = ĝ al+1−al
2

(ω − al + al+1

2
),

or, equivalently, in the time domain

ql(t) = g al+1−al
2

(t) ei
al+al+1

2 t .

In Appendix E we show that, for δ ∈ (0, π) ∩ Rc, gδ is a
computable function in B1π . Since {al}l∈N is a computable
sequence of rational numbers, it follows that ql ∈ CB1π for all
l ∈ N, and that {ql}l∈N is a computable sequence of functions
in CB1

π . Further, we have ql ∈ B1al+1
for all l ∈ N. Let

f3(t) =
∞∑
l=1

1

l2
ql(t), t ∈ R. (18)

We have

‖f3‖B1
π
≤
∞∑
l=1

1

l2
‖ql‖B1

π
=

∞∑
l=1

1

l2
=
π2

2
,

where we used (17) in the last inequality. The series in (18)
converges effectively in the B1π-norm which shows that f3 ∈
CB1

π . Since ql ∈ B1ω∗ for all l ∈ N, it follows that f3 ∈ B1ω∗ ,
i.e., that

B(f3) ≤ ω∗. (19)

Let k ∈ N be arbitrary. For ω ∈ (ak, ak+1) we have

|f̂3(ω)| = 1

k2
ĝ ak+1−ak

2

(ω − ak + ak+1

2
) > 0.

This implies that B(f3) ≥ ak+1 for all k ∈ N, and conse-
quently that

B(f3) ≥ ω∗. (20)

Combining (19) and (20), it follows that B(f3) = ω∗, and
consequently that B(f3) 6∈ Rc, according to Lemma 1.

VI. SEMI DECIDABILITY

We have seen in Theorems 1 and 2 that there exist signals
f in B2π and in B1π such that B(f) 6∈ Rc. Hence, for those
signals, it is impossible to algorithmically compute B(f)—
there exists no algorithm that can perform this task. This raises
the question whether we can algorithmically detect the cases
where this behavior occurs. It would be useful to have an
algorithmic test that can determine whether, for a given signal
f , we have B(f) ∈ Rc, or not. Such an algorithmic test is
desirable, for example, for computer aided signal parameter
estimation. By means of a signal preselection, the computer
could eliminate the non-admissible signals beforehand. In this
section we show that such an algorithmic test cannot exist.

Definition 9. We call a setM⊆ CB1π semi-decidable if there
exists a Turing machine

TM : CB1
π → {TM stops, TM runs forever}

that, given an input f ∈ CB1π , stops if and only if f ∈M.

Remark 7. If M is semi-decidable, the Turing machine TM
accepts exactly the elements of M.

Let
C1BW =

{
f ∈ CB1π : B(f) ∈ Rc

}
denote the set of all signals in CB1

π for which B(f) can be
computed algorithmically, and

NC1BW = CB1
π \ C1BW =

{
f ∈ CB1π : B(f) 6∈ Rc

}
.

the set of all signals in CB1
π , for which B(f) cannot be

computed algorithmically.
In view of our above discussion, it would be desirable to

have a Turing machine that can decide whether B(f) ∈ Rc
or B(f) 6∈ Rc. We will show that such a Turing machine
cannot exist, by proving that even the weaker problem of semi-
decidability cannot be answered positively.

Theorem 3. Neither C1BW nor NC1BW is semi-decidable.

Proof. Let A ( N be a recursively enumerable nonrecursive
set, and φA : N→ A a recursive enumeration of the elements
of A. As in the proof of Theorem 1, we set

al =
l∑

k=1

1

2φA(k)

and

ω∗ := lim
l→∞

al =
∞∑
k=1

1

2φA(k)
.

According to Lemma 1, we have ω∗ 6∈ Rc. Further, let f3 ∈
CB1

π be defined as in the proof of Theorem 2.
We first prove that C1BW is not semi-decidable. Let

g(t) =

(
sin(a1t/2)

πt

)2

.

We have B(g) = a1 ∈ Rc and g ∈ CB1π , as we show in
Appendix E. For λ ∈ [0, 1], we set

gλ(t) = g(t) + λf3(t), t ∈ R.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2021.3057672

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION THEORY 9

Then we have g0 = g ∈ C1BW. Further, we have gλ ∈ CB1π for
all λ ∈ [0, 1]∩Rc. Note that we can effectively approximate gλ,
independently of λ. To see this, let {gN}N∈N be a sequence
of elementary computable functions that satisfies

‖g − gN‖B1
π
≤ 1

2N+1
, N ∈ N,

and {f3,N}N∈N a sequence of elementary computable func-
tions that satisfies

‖f3 − f3,N‖B1
π
≤ 1

2N+1
, N ∈ N,

and let

uλ,N (t) = gN (t) + λf3,N (t), t ∈ R.

Then, for all λ ∈ [0, 1] ∩ Rc, we have

‖gλ − uλ,N‖B1
π
≤ ‖g − gN + λf3 − λf3,N‖B1

π

≤ ‖g − gN‖B1
π

+ λ‖f3 − f3,N‖B1
π

≤ 1

2N+1
+ λ

1

2N+1

≤ 1

2N
.

For |ω| > a1 we have

ĝλ(ω) = λf̂3(ω).

Hence, we see that B(gλ) = ω∗ 6∈ Rc, i.e. gλ ∈ NC1BW for all
λ ∈ (0, 1] ∩ Rc. We use a proof by contradiction and assume
that C1BW is semi-decidable. Since C1BW is semi-decidable, there
exists a Turing machine TMC1BW

that stops if and only if f ∈
C1BW. Further, we use the fact that there exists a Turing machine
TM> that, given an input λ ∈ Rc, stops if and only if λ > 0
[26, Proposition 0, p. 14]. Using those two Turing machines,
we build a new Turing machine according to

TM(λ) =

{
0, TMC1BW

(gλ) stops,
1, TM>(λ) stops.

TM is a Turing machine that can decide for λ ∈ [0, 1] ∩ Rc
whether λ = 0 or λ > 0. This is a contradiction, because such
a Turing machine cannot exist [26, Proposition 0, p. 14].

Next, we prove that NC1BW is not semi-decidable. For λ ∈
[0, 1] let

φλ(t) = f3(t) + λ

(
sin(πt/2)

πt

)2

, t ∈ R.

For λ ∈ [0, 1] ∩ Rc we have φλ ∈ CB1π . For λ = 0 we have
φ0 = f3 ∈ NC1BW, because B(φ0) = B(f3) = ω∗ 6∈ Rc.
For λ ∈ (0, 1] ∩ Rc we have B(φλ) = π ∈ Rc and therefore
φλ ∈ C1BW. Again, we use a proof by contradiction. We assume
that NC1BW is semi-decidable and derive a contradiction.
Since NC1BW is semi-decidable, there exists a Turing machine
TMNC1BW

that stops if and only if f ∈ NC1BW. We consider
the Turing machine

TM(λ) =

{
0, TMNC1BW

(φλ) stops,
1, TM>(λ) stops.

TM is a Turing machine that can decide for λ ∈ [0, 1] ∩ Rc
whether λ = 0 or λ > 0. This is a contradiction, because such
a Turing machine cannot exist [26, Proposition 0, p. 14].

Remark 8. The theory for B2π is the same, i.e., neither

C2BW =
{
f ∈ CB2π : B(f) ∈ Rc

}
nor

NC2BW = CB2
π \ C2BW =

{
f ∈ CB2π : B(f) 6∈ Rc

}
is semi-decidable.

VII. APPROXIMATE BANDWIDTH

In Section V we have seen that, in general, it is not possible
to algorithmically compute the actual bandwidth B(f) of a
signal f . Next, we treat the Question 2 from the introduction.
For a given number σ > 0, we want to algorithmically
determine if B(f) > σ. The following theorem shows that
this is possible, in the sense that there exists an algorithm that
stops if and only if B(f) > σ.

For σ ∈ (0, π) ∩ Rc, let

C1>(σ) =
{
f ∈ CB1π : B(f) > σ

}
.

Theorem 4. For all σ ∈ (0, π) ∩ Rc the set C1>(σ) is semi-
decidable.

According to this theorem, we can specify a bandwidth σ >
0 and find a Turing machine that stops if and only if the actual
bandwidth B(f) of the signal f is larger than σ. Unfortunately,
this result does not allow us to determine an effective upper
bound for B(f), because this Turing machine does not stop
if B(f) ≤ σ.

If the Turing machine stops for a given signal f ∈ CB1π then
it follows that f cannot be reconstructed from the samples
{f(kπ/σ)}k∈Z, in general, because the sampling rate σ/π is
too low.

Proof of Theorem 4. Let σ ∈ (0, π)∩Rc be arbitrary but fixed.
For f ∈ CB1π we will construct a Turing machine TMC1> (σ) that
stops if and only if f ∈ C1>(σ). We have∣∣∣∣f̂(ω)−

∫ n

−n
f(t) e−iωt dt

∣∣∣∣ ≤ ∫
|t|≥n
|f(t)| dt

for all ω ∈ [−π, π]. Since f ∈ CB1π , we can find a recursive
function ξ : N→ N such that, for all N ∈ N, we have∫

|t|≥n
|f(t)| dt ≤ 1

2N

for all n ≥ ξ(N). Thus, we see that f̂ is a computable
continuous function. In particular, f̂ is computable on the
intervals [−π,−σ] and [σ, π], where the endpoints of the
intervals are computable numbers, and therefore the numbers

C−(f) = max
ω∈[−π,−σ]

|f̂(ω)|

and
C+(f) = max

ω∈[σ,π]
|f̂(ω)|
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are computable real numbers [26, Theorem 7, p. 40]. Hence,
there exist Turing machines TM− and TM+ that, for an input
f ∈ CB1π , compute C−(f) and C+(f), respectively. Further,
we use that fact that there exists a Turing machine TM> that,
given an input λ ∈ Rc, stops if and only if λ > 0. The
concatenations

TM−(f) = TM>(TM−(f))

and
TM+(f) = TM>(TM+(f))

define two new Turing machines TM− and TM+. TM− stops
if and only if C−(f) > 0 and TM+ stops if and only if
C+(f) > 0. The Turing machine TMC1> (σ) that stops if TM−
or TM+ stops, and otherwise runs forever, is the desired Turing
machine. If f ∈ C1>(σ), i.e. if B(f) > σ, then we have
C−(f) > 0 or C+(f) > 0, and consequently TMC1> (σ)(f)
stops. If f 6∈ C1>(σ), i.e. if B(f) ≤ σ, then we have
C−(f) = 0 and C+(f) = 0, and consequently TMC1> (σ)(f)
runs forever.

The previous theorem can be extended to hold for the larger
signal spaces CBpπ , p ∈ (1,∞) ∩ Rc, and for CB∞π,0. For σ ∈
(0, π) ∩ Rc and p ∈ [1,∞] ∩ Rc, let

Cp> (σ) =

{
{f ∈ CBpπ : B(f) > σ} , 1 ≤ p <∞,{
f ∈ CB∞π,0 : B(f) > σ

}
, p =∞.

For these sets, we have the following result.

Theorem 5. Let σ ∈ (0, π) ∩ Rc and p ∈ [1,∞] ∩ Rc. Then
the set Cp>(σ) is semi-decidable.

Proof. Let σ ∈ (0, π) ∩ Rc and p ∈ [1,∞] ∩ Rc be arbitrary
but fixed. Further, let f ∈ CBpπ if p < ∞ and f ∈ CB∞π,0 if
p =∞. Let

g(z) =

(
f( z2 )− f(0)

)2
z2

, z ∈ C.

At z = 0 the function g has a removable singularity, and we
have g ∈ L1(R). For all ε > 0 there exists a constant C1(ε)
such that for all |z| ≥ 1 we have

|g(z)| =
|f( z2 )− f(0)|2

|z|2
≤ |f( z2 )|2 + 2|f(0)||f( z2 )|+ |f(0)|2

≤ C1(ε) e(B(f)+ε)|z| . (21)

In the second inequality of (21) we used that f(z/2)2 is a
bandlimited signal with bandwidth B(f). Since (21) is valid
for all ε > 0, we see that B(g) ≤ B(f). Next, we will show
that B(g) ≥ B(f), which then implies that B(g) = B(f).
Since

|g(z)| · |z|2 = |f( z2 )− f(0)|2,

it follows that√
|g(z)| · |z| = |f( z2 )− f(0)| ≥ |f( z2 )| − |f(0)|. (22)

Let µ > 0 be arbitrary. There exists a ẑ = ẑ(µ) such that for
all |z| ≥ ẑ(µ) we have

eµ|z| ≥ |z|. (23)

Combining (22), (21), and (23), we see that√
C1(ε) e(

ε
2+µ+

B(g)
2 )|z| ≥ |f( z2 )| − |f(0)| (24)

for all |z| ≥ ẑ(µ). Let δ > 0 with δ < B(f) be arbitrary but
fixed. For all K ∈ N there exists a zK ∈ C such that

|f(zK)| ≥ K e(B(f))−δ)|zK | .

Clearly, we have
lim
K→∞

|zK | =∞,

because for all R > 0 there exists a C(R) with

|f(z)| ≤ C(R)

for all |z| ≤ R. For K large enough such that |zK | > ẑ(µ)
we have

|f( zK2 )| ≥ K e(
(B(f))

2 − δ2 )|zK |,

which, together with (24), gives√
C1(ε) e(

ε
2+µ+

B(g)
2 −

B(f)
2 + δ

2 )|zK | ≥ K − |f(0)|
e(
B(f)

2 − δ2 )|zK |
.

(25)

Since (25) holds for all sufficiently large K, it follows that

ε

2
+ µ+

B(g)

2
− B(f)

2
+
δ

2
> 0,

or, equivalently, that

ε+ 2µ+B(g) + δ > B(f).

Since ε > 0, µ > 0, and δ > 0 were arbitrary, it follows that
B(g) ≥ B(f). Hence, we have g ∈ B1π with B(g) = B(f).
In Appendix VII we will prove that g is computable in B1π ,
i.e., that g ∈ CB1π . To complete the proof, we use the Turing
machine TMC1> (σ) from the proof of Theorem 4. TMC1> (σ)(g)
stops if and only if B(f) = B(g) > σ. Consequently, Cp> (σ)
is semi-decidable.

Next, we show that, for σ ∈ (0, π) ∩ Rc, the set

C1≤(σ) =
{
f ∈ CB1π : B(f) ≤ σ

}
is not semi-decidable.

Theorem 6. For all σ ∈ (0, π) ∩ Rc the set C1≤(σ) is not
semi-decidable.

Proof. We use a proof by contradiction. Assume that there
exists a σ ∈ (0, π) ∩ Rc such that C1≤(σ) is semi-decidable.
Then there exists a Turing machine TMC1≤(σ) that stops for
f ∈ CB1π if and only if f ∈ C1≤(σ). We consider the two
functions

f0(t) =

(
sin
(
σt
2

)
σt

)2

and

f1(t) =

(
sin
(
πt
2

)
πt

)2

.
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We have f0, f1 ∈ CB1π , which can be shown by the same
calculation as in Appendix E, as well as B(f0) = σ and
B(f1) = π. For λ ∈ [0, 1] ∩ Rc let

fλ(t) = (1− λ)f0(t) + λf1(t), t ∈ R.

Then we have fλ ∈ CB1π for all λ ∈ [0, 1] ∩Rc. Note that we
can effectively approximate fλ, independently of λ. To see
this, let {g0,N}N∈N be a sequence of elementary computable
functions that satisfies

‖f0 − g0,N‖B1
π
≤ 1

2N
, N ∈ N,

and {g1,N}N∈N a sequence of elementary computable func-
tions that satisfies

‖f1 − g1,N‖B1
π
≤ 1

2N
, N ∈ N,

and let

gλ,N (t) = (1− λ)g0,N (t) + λg1,N (t), t ∈ R.

Then, for all λ ∈ [0, 1] ∩ Rc, we have

‖fλ − gλ,N‖B1
π

≤ ‖(1− λ)f0 − (1− λ)g0,N + λf1 − λg1,N‖B1
π

≤ (1− λ)‖f0 − g0,N‖B1
π

+ λ‖f1 − g1,N‖B1
π

≤ (1− λ)
1

2N
+ λ

1

2N

=
1

2N
.

Further, we have B(fλ) = π for λ ∈ (0, 1]∩Rc and B(fλ) = σ
for λ = 0. We consider the Turing machine

TM(λ) =

{
0, TMC1≤(σ)(fλ) stops,

1, TMC1> (σ)(fλ) stops,

where TMC1> (σ) is the Turing machine from the proof of
Theorem 4. Since TMC1≤(σ)(fλ) stops if and only if B(fλ) ≤ σ
and TMC1> (σ)(fλ) stops if and only if B(fλ) > σ, we see that
TM(fλ) = 0 if and only of λ = 0 and TM(fλ) = 1 if and
only if λ ∈ (0, 1] ∩ Rc. Hence, TM is a Turing machine that
can decide for λ ∈ [0, 1]∩Rc whether λ = 0 or λ > 0. This is
a contradiction, because such a Turing machine cannot exist
[26, Proposition 0, p. 14].

Theorem 6 implies that for a given σ ∈ (0, π) ∩ Rc, we
cannot determine algorithmically for all f ∈ CB1π whether f
is uniquely determined by the samples {f(kπ/σ)}k∈Z. We
can only determine algorithmically the situation when the
sequence of samples {f(kπ/σ)}k∈Z does not contain enough
information for a unique reconstruction of f .

VIII. APPROXIMATE BANDWIDTH II

For a given number σ > 0 and a given signal f ∈ CB1π we
would like to be able to algorithmically determine whether
B(f) < σ. To study whether this is always possible we
consider the set

C1<(σ) =
{
f ∈ CB1π : B(f) < σ

}
and study whether C1<(σ) is semi-decidable.

In Theorem 6 in Section VII, we have already shown that,
for all σ ∈ (0, 1) ∩ Rc, the set

C1≤(σ) =
{
f ∈ CB1π : B(f) ≤ σ

}
is not semi-decidable. For these sets, the non-semi-decidability
could be caused by the condition B(f) ≤ σ, in which σ is a
sharp upper bound for the actual bandwidth. That is, σ/π is
a sharp upper bound for the necessary sampling rate. Instead,
for f ∈ C1<(σ), σ only gives a sufficient sampling rate σ/π,
which always corresponds to oversampling.

However, even this modified question cannot be answered
algorithmically in general.

Theorem 7. There exist an n ∈ N and an l ∈ N with 1 ≤ l ≤
2n − 1 such that C1<(lπ/2n) is not semi-decidable.

In the proof of Theorem 7 we will use the signal f1 ∈ B1π
with B(f1) = ω∗ 6∈ Rc from the proof of Theorem 1 to show
that the set C1<(σ) is not always semi-decidable.

Proof of Theorem 7. We use a proof by contradiction. As-
sume that for all n ∈ N and all l ∈ N with 1 ≤ l ≤ 2n−1 the
set C1<(lπ/2n) is semi-decidable. Hence, for each n ∈ N and
1 ≤ l ≤ 2n − 1, there exists a Turing machine TMC1< (lπ/2n)
that stops if and only if f ∈ C1<(lπ/2n). We already know
from Theorem 4 that C1>(lπ/2n) is semi-decidable for all
1 ≤ l ≤ 2n − 1. For n ∈ N and 1 ≤ l ≤ 2n − 1, we denote
by TMC1> (lπ/2n) the Turing machine that stops if and only if
f ∈ C1>(lπ/2n). Let f1 ∈ CB1π be the signal from Theorem 1
with B(f1) = ω∗ 6∈ Rc. Since ω∗ is a non-computable real
number, we have for all 1 ≤ l ≤ 2n − 1 that ω∗ 6= lπ/2n.
Hence, we have for n ∈ N and 1 ≤ l ≤ 2n − 1 always either
f1 ∈ C1<(lπ/2n) or f1 ∈ C1>(lπ/2n).

Let n ∈ N be arbitrary but fixed. On a universal Turing
machine we start 2n − 1 Turing machines TMC1> (lπ/2n)(f1),
1 ≤ l ≤ 2n−1, and 2n−1 Turing machines TMC1< (lπ/2n)(f1),
1 ≤ l ≤ 2n − 1. Exactly 2n − 1 of these 2(2n − 1) Turing
machines stop. We wait until this has happened. Let l>n be the
largest index such that all Turing machines TMC1> (lπ/2n)(f1)
with 1 ≤ l ≤ l>n stopped. Further, let l<n be the smallest index
such that all Turing machines TMC1< (lπ/2n)(f1) with l<n ≤ l ≤
2n− 1 stopped. Obviously, we have l<n = l>n + 1. Further, it is
clear that if TMC1< (l̂π/2n)(f1) stops for some l̂, then we have
B(f1) < l̂π/2n, and, consequently, TMC1< (lπ/2n)(f1) stops for
all l̂ ≤ l ≤ 2n−1. Similarly, if TMC1> (l̂π/2n)(f1) stops for some
l̂, then TMC1> (lπ/2n)(f1) stops for all 1 ≤ l ≤ l̂. We have seen
that both numbers l<n and l>n can be determined algorithmically
by the universal Turing machine. We have

l>nπ

2n
< ω∗ <

l<nπ

2n
=

(l>n + 1)π

2n
.

Let

λn =
l>nπ

2n
.

Note that λn ∈ Rc and that we have

|ω∗ − λn| <
π

2n
.
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Since, n ∈ N was arbitrary, this procedure defines a com-
putable sequence {λn}n∈N of computable numbers that con-
verges effectively to ω∗. According to [26, Proposition 1,
p. 20], this implies that ω∗ ∈ Rc, which is a contradiction.

The actual bandwidth B(f1) = B(f3) = ω∗ of the com-
putable signals f1 and f3 from Theorems 1 and 2, respectively,
is not Turing computable. This number has the property that it
is the limit of a monotonically increasing computable sequence
of rational numbers. Next, we will show that all bandwidths
B(f) of signals f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, or f ∈ CB∞π,0
have this property. That is, we can always approximate B(f)
monotonically, however, the convergence is not effective in
general, because B(f) is not necessarily a computable number.
This will be the statement of Theorem 8. In Theorem 9 we will
show that if B(f) ∈ Rc, then the sequence that is constructed
in Theorem 8 converges effectively to B(f).

Theorem 8. For all f ∈ CB∞π,0 there exists a strictly mono-
tonically increasing computable sequence {λn}n∈N of dyadic
rational numbers such that limn→∞ λn = B(f).

Proof. Let f ∈ CB∞π,0 be arbitrary but fixed. The construction
of the sequence {λn}n∈N is done similarly to the procedure
in the proof of Theorem 7. From Theorem 5 we know that,
for all σ ∈ (0, π) ∩ Rc, the set

{
f ∈ CB∞π,0 : B(f) > σ

}
is

semi-decidable. Hence, for all σ ∈ (0, π) ∩ Rc there exists a
Turing machine TMC∞> (σ) such that TMC∞> (σ)(f) stops if and
only if B(f) > σ.

We construct the sequence {λn}n∈N iteratively. In the first
step, we start the Turing machine TMC∞> (π/2)(f). We let this
Turing machine run. In the second step, we start the three
Turing machines TMC∞> (lπ/22)(f), 1 ≤ l ≤ 22 − 1. We let
these Turing machines run. Generally, in the jth step, we start
2j − 1 Turing machines TMC∞> (lπ/2j)(f), 1 ≤ l ≤ 2j − 1, and
let these run. This procedure is continued ad infinitum.

Since TMC∞> (σ)(f) stops if and only if B(f) > σ, we know
that eventually all Turing machines with lπ/2j < B(f) will
stop. We wait until one of the Turing machine stops. Let j1
denote the iteration step in which this machine was started and
l1 the number of this machine. We set

λ1 =
l1π

2j1
.

Now we wait until the second Turing machine stops. Let j2
denote the iteration step in which this machine was started and
l2 the number of this machine. If

l2π

2j2
> λ1

then we set

λ2 =
l2π

2j2
.

Then we wait until the next Turing machine stops, and so
on. Using this procedure we generate a computable sequence
{λn}n∈N with λn+1 > λn, n ∈ N.

Theorem 9. Let f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, or f ∈ CB∞π,0.
If B(f) ∈ Rc then the sequence {λn}n∈N from the proof of
Theorem 8 converges effectively to B(f).

Proof. Let {λn}n∈N be the strictly monotonically increasing
computable sequence from Theorem 8, and let B(f) ∈ Rc. We
first show that there exists a computable sequence {αn}n∈N
of rational numbers with αn+1 ≤ αn, n ∈ N, such that

|B(f)− αn| ≤
1

2n
,

i.e., the sequence {αn}n∈N converges effectively to B(f).
Since B(f) ∈ Rc, there exists a computable sequence
{γn}n∈N of rational numbers such that

|B(f)− γn| ≤
1

2n
(26)

for all n ∈ N. Hence, we have

B(f) ≤ γn +
1

2n

for all n ∈ N. Let

αn = min
1≤l≤n

(
γl +

1

2l

)
, n ∈ N.

{αn}n∈N is a computable sequence of rational numbers, and
we have αn ≥ αn+1 for all n ∈ N. It follows that

|B(f)− αn| = αn −B(f) ≤ γn +
1

2n
−B(f) ≤ 2

2n

for all n ∈ N, where we used (26) in the last inequality. This
shows that {αn}n∈N converges effectively to B(f).

Let
δn = αn − λn, n ∈ N.

{δn}n∈N is a computable sequence of rational numbers, and
we have

δn = αn − λn ≥ αn+1 − λn ≥ αn+1 − λn+1 = δn+1

for all n ∈ N. Thus, we see that {δn}n∈N is monotonically
decreasing computable sequence of rational numbers with

lim
n→∞

δn = 0.

For N ∈ N, let ξ(N) be the smallest natural number such that

δξ(N) <
1

2N
.

Then we have
δn <

1

2N

for all n ≥ ξ(N). It follows that

αn − λn <
1

2N

for all n ≥ ξ(N). For arbitrary l > n we have

αl − λn <
1

2N

because αl ≤ αn. Hence, we have

|B(f)− λn|B(f)− λn = lim
l→∞

αl − λn <
1

2N

for all n ≥ ξ(N), i.e., we have effective convergence of the
sequence {λn}n∈N.

The next theorem shows that for f ∈ CBpπ , p ∈ [1,∞)∩Rc,
and for f ∈ CB∞π,0 we cannot always approximate B(f) by
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a monotonically decreasing computable sequence of rational
numbers.

Theorem 10. Let f ∈ CB∞π,0. Then we have B(f) 6∈ Rc if and
only if there exist no monotonically decreasing computable
sequence {µn}n∈N of rational numbers with limn→∞ µn =
B(f).

Remark 9. Theorem 10 answers the question when we have
B(f) ∈ Rc for the signal of interest f ∈ CB∞π,0. Only
in this case it is possible to find an algorithm that can
compute B(f) with arbitrary precision. Theorem 10 shows
that the existence of a monotonically decreasing computable
sequence that converges to B(f) is sufficient and necessary
for B(f) ∈ Rc.

Proof of Theorem 10. “⇒”: Let B(f) 6∈ Rc. We use a proof
by contradiction and assume that there exists a monotonically
decreasing computable sequence {µn}n∈N of rational numbers
with limn→∞ µn = B(f). Then the proof of Theorem 9
implies that the sequence {λn}n∈N from Theorem 8 converges
effectively to B(f), which in turn implies that B(f) ∈ Rc.
This is a contradiction.

“⇐”: We do a proof by contradiction and assume that there
exists no such monotonically decreasing computable sequence
{µn}n∈N of rational numbers with limn→∞ µn = B(f), but
we have B(f) ∈ Rc. Since B(f) ∈ Rc, we know from the first
part of the proof of Theorem 9 that there exists a monoton-
ically decreasing computable sequence {αn}n∈N of rational
numbers that converges to B(f). This is a contradiction.

In Theorem 8, we have seen that B(f) is the limit of a
monotonically increasing computable sequence {λn}n∈N of
rational numbers. However, for λn we only know that λn <
B(f), but not how far λn is from B(f). Hence, this sequence
does not help to answer the question of the minimum sampling
rate. Moreover, from Theorem 10 we know that if B(f) 6∈ Rc,
then there exists no computable sequence of upper bounds for
B(f) that converges to B(f). Thus, we do not only have
B(f) 6∈ Rc, but we also cannot algorithmically determine a
sequence of upper bounds that converges to B(f). Surprisingly
this holds although the signal f is computable.

IX. CONCLUSION

Our analyses also address the following general question:
Given computable, well-behaved “objects”, which in our case
are the computable bandlimited signals, do there exist phys-
ically relevant quantities associated with these objects that
cannot always be computed? We have shown that the answer
to this question is “yes”. Computable signals f ∈ CB2π
can be described arbitrarily well with respect to their time
domain behavior and certain physical quantities, such as the
energy ‖f‖2B2

π
are computable, i.e., they can be algorithmi-

cally determined with arbitrary precision. However, there exist
computable bandlimited signals f ∈ CB2π for which the actual
bandwidth of the signal B(f) is not computable. B(f) de-
termines the smallest symmetrical interval I in the frequency
domain such that the entire energy of f is concentrated on I .
Further, B(f) characterizes the minimum sampling rate and

therefore the sampling point sequences that uniquely describe
the signal. It would be interesting to study which other signal
properties are computable and which are not.

We can interpret the problem also from an optimization
point of view. For signals f ∈ CB1

π , the actual bandwidth
B(f) is the smallest number σ > 0 such that∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ σ

−σ
|f̂(ω)|2 dω

Let
Ψf (σ) =

1

2π

∫ σ

−σ
|f̂(ω)|2 dω

denote the functional that is relevant in this optimization
problem. Since f̂ is a computable continuous function, it
follows that Ψf : R→ R is a computable continuous function
[26, Section 7, pp. 44]. We have

‖f‖2B2
π

= max
σ∈R

Ψf (σ) = max
σ∈R

1

2π

∫ σ

−σ
|f̂(ω)|2 dω,

and, for f ∈ CB1π , this maximum is computable. However, the
smallest maximizer, i.e.,

B(f) = min

(
arg max
σ∈R

1

2π

∫ σ

−σ
|f̂(ω)|2 dω

)
is not computable in general. We formulated the optimization
task for the signals in CB1

π here. Since CB1
π ⊂ CB2π , the

problem equally exist for the larger set CB2
π .

One approach to prove non-computability for certain prob-
lems, is the technique presented in [26] by Pour-El. Please
note that this technique works only for certain classes of linear
operators T : B1 → B2 that map between two Banach spaces
B1 and B2. Further, it only gives the information that there
exists an f∗ in a computability structure of B1 such that Tf∗
is not computable in B2. However, the non-computability of
Tf∗ in B2 does not necessarily imply that ‖Tf∗‖B2

6∈ Rc.
Nevertheless, for many practical applications, the norm is
the essential quantity of interest, for example, the L∞-norm
measures the peak value and the L2-norm the energy of a
signal.

Since, in our case, the mapping B : f 7→ B(f) is non-linear,
the Pour-El technique from [26] is not applicable. Further,
the approach taken in the present paper also provides specific
examples of signals f1 ∈ CB2

π and f3 ∈ CB1
π such that

B(f1) 6∈ Rc and B(f3) 6∈ Rc, respectively. To the best of
our knowledge, the extension of the Pour-El theory to non-
linear operators has not been studied so far, and the general
answer to this question is open. With the results in the present
paper, we provide first examples in this direction.

X. FURTHER OPEN PROBLEMS

We have shown in Section VIII that, for f ∈ CB∞π,0, there
exists a monotonically increasing computable sequence of
rational numbers {λn}n∈N such that limn→∞ λn = B(f).
Further, we have seen in Section VII that the set {f ∈
CB∞π,0 : B(f) > λ} is semi-decidable. In the proofs of these
results, we used the specific structure of the signals in B∞π,0.
It would be interesting to study both questions for a more
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general class of bandlimited signals, e.g., entire functions of
exponential type.

An entire function f is completely determined by its Taylor
coefficients {an}∞n=0, according to

f(z) =
∞∑
n=0

an
n!
zn, (27)

where the series in (27) converges for all z ∈ C, and for all
R > 0, the convergence is uniform on |z| ≤ R. This leads to
the following definition of computability for entire functions
of exponential type: An entire function of exponential type is
called computable if the coefficients {an}∞n=0 of the Taylor
series form a computable sequence of computable numbers.

Note that all signals f ∈ CBpπ , p ∈ [1,∞] ∩ Rc, are
computable entire functions according to this definition. From
the definition it is also clear that, for computable entire
functions, we immediately have a computable representation
on all compact subsets of the complex plane, and consequently
on all compact subsets of the real axis. However, from the local
behavior we cannot infer the behavior on the entire real axis.

For computable entire functions it is unclear whether the
actual bandwidth is still the limit of a monotonically increasing
computable sequence of computable rational numbers, and
whether the set of computable entire functions of exponential
type with B(f) > λ is still semi-decidable. We conjecture
that both statements do not hold in general for computable
entire functions of exponential type. Another open problem is
as follows: For entire functions of exponential type at most
π it is unclear whether there exists a pair of Turing machines
TMB and TMB such that, for every computable entire function
of exponential type at most π with B(f) ≤ π, we have

TMB(f) ≤ B(f) ≤ TMB(f).

Thus, TMB shall compute a lower bound on the actual
bandwidth B(f), and TMB an upper bound. We conjecture
that the only Turing machines that have these properties, are
the Turing machines that return the trivial bounds, i.e., 0 for
TMB , and π for TMB . If these conjectures were true then we
would have the interesting situation that the signal behavior
on the real axis, e.g., a finite Lp-norm, determines the answer
to certain questions of computability.

Regarding the general problem of computing the bandwidth,
it would be interesting to find practically relevant Banach
spaces of bandlimited functions with a computability structure,
such that the actual bandwidth is always computable. Ideally,
such spaces could be characterized by the time domain or
frequency domain behavior of the signals.

A problem, similar to the computation of the bandwidth, is
the problem of computing the period of a periodic computable
continuous function. Please note that computing the period of
certain computable continuous functions is the core task in
Shor’s famous algorithms [40] for factorizing natural numbers
and computing the discrete logarithm, and also the only part
of the algorithms that has to be implemented on a universal
quantum computer. Interestingly, all candidates for a “post-
quantum cryptography” that could already be broken, were
broken by quantum algorithms that compute the period of

certain computable functions. It seems as if finding periods of
functions is the only class of well-investigated mathematical
problems for which quantum algorithms could be developed
that have a substantial complexity advantage over the best
known classical algorithms. Hence, from this perspective, it
would be meaningful to analyze the computability of the
period of computable continuous functions.

There are many further interesting open problems and
research directions related to computability in information
theory, and we will discuss three of them next.

1) Finding extensions of the main technique of the Pour-
El theory, such that the strongest possible result for non-
computability, i.e., ‖Tf‖B2 6∈ Rc, can be shown, where T
is some linear operator. Recently, numerous methods and
operations have been analyzed with respect to computabil-
ity on Turing machines, where the strongest form of non-
computability has been considered. This strongest form of non-
computability was shown, for example, for the interpolation
of certain computable discrete-time signals with the Shannon
sampling series in [41], for the downsampling of bandlimited
signals in [42], and for the spectral factorization, the Wiener
filter and prediction theory in [43]. All these examples have in
common that for computable inputs non-computable outputs
can be generated. Hence, the above operations are not al-
ways Turing computable, and tasks involving these operations
cannot always be solved algorithmically. This is exactly the
same non-computability behavior that we have shown in the
present paper for the bandwidth, and correspondingly for the
minimum sampling rate. Closely related to the phenomenon
of non-computability is the fact that the existence of important
objects in information theory often has to be proved by non-
constructive methods. This situation seems to occur frequently
in information theory, and it is surprising that, although even
Shannon was forced to give a non-effective proof for the
existence of a sequence of capacity achieving codes in his
seminal work [44], the algorithmic construction of relevant
objects has scarcely been studied so far. For the problem
of constructing capacity achieving codes as function of the
channel, it only recently could be shown that this task cannot
by algorithmically solved by a Turing machine [45].

2) Studying optimization problems, in particular the com-
putability of the optimizer, as discussed above. This aspect also
plays a central role in information theory. A simple example is
the computation of an optimal input distribution for a discrete
memoryless channel that achieves the Shannon capacity. For
this computation, different approaches have been suggested
[46]–[50]. An analysis of the proofs in these publications,
however, shows the approaches are non-constructive. That is,
they do not allow an algorithmic control of the convergence
speed. As a consequence, it is not clear whether the ap-
proaches from [46]–[50] are algorithms in the sense of Turing
computability, i.e., in the sense of computability on digital
computers. This needs to be considered, in particular since
the computation of the optimal input distribution on digital
computers has been the motivation for the publications [46],
[47].

3) Analyzing computability in the context of time-variant
channels [51]–[54]. Current results in this theory are usually
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based on distribution theory and no guarantees for effective
convergence are given. For additional discussions and results
related to the capacity of channels, see for example [55].

APPENDIX A
TABLE OF SYMBOLS AND SETS

Symbol Meaning

Lp(Ω) Measurable, pth-power Lebesgue integrable functions on Ω

‖ · ‖p Lp-norm: ‖f‖p = (
∫
Ω|f(t)|p dt)1/p

L∞(Ω) Space of all measurable, essentially bounded functions on Ω
‖ · ‖∞ L∞ norm: ‖f‖∞ = ess supt∈Ω|f(t)|
Bpπ Bandlimited signals (bandwidth π) with finite Lp-norm
B2
π Bandlimited signals (bandwidth π) with finite energy
B∞π Bandlimited signals (bandwidth π) with finite L∞-norm
B∞π,0 Bandlimited signals in B∞π that vanish at infinity
B(f) Actual bandwidth of a signal f
CBpπ Set of all signals in Bpπ that are computable
CB∞π,0 Set of all signals in B∞π,0 that are computable

A A recursively enumerable nonrecursive set
C1

BW
{
f ∈ CB1

π : B(f) ∈ Rc
}

NC1
BW CB1

π \ C1
BW =

{
f ∈ CB1

π : B(f) 6∈ Rc
}

C2
BW

{
f ∈ CB2

π : B(f) ∈ Rc
}

NC2
BW CB2

π \ C2
BW =

{
f ∈ CB2

π : B(f) 6∈ Rc
}

C1
> (σ)

{
f ∈ CB1

π : B(f) > σ
}

Cp> (σ)
{
f ∈ CBpπ : B(f) > σ

}
C∞> (σ)

{
f ∈ CB∞π,0 : B(f) > σ

}
C1
≤(σ)

{
f ∈ CB1

π : B(f) ≤ σ
}

C1
< (σ)

{
f ∈ CB1

π : B(f) < σ
}

APPENDIX B
MINIMUM BANDWIDTH

For a given bandlimited signal f , we introduced in Sec-
tion III the number B(f) = min{σ ∈ R : f ∈ Bσ} as the
actual bandwidth of the signal f . Next, we will prove that this
minimum indeed always exists.

Let B(f) = inf{σ ∈ R : f ∈ Bσ}, i.e., let B(f) be the
infimum of all σ such that for all ε > 0 there exists a constant
C(ε) with

|f(z)| ≤ C(ε) e(σ+ε)|z| (28)

for all z ∈ C. We will show that this infimum is actually
attained, i.e., a minimum.

Let δ > 0 be arbitrary but fixed. According to the properties
of the infimum, there exists a σδ , such that for all ε > 0 there
exists a constant C(σδ, ε) such that

|f(z)| ≤ C(σδ, ε) e(σδ+ε)|z|

holds, and we have

σδ ≤ B(f) +
δ

2
.

We choose ε = δ/2. Then it follows that

|f(z)| ≤ C(σδ, δ/2) e(σδ+δ/2)|z|

≤ C(σδ, δ/2) e(B(f)+δ)|z| . (29)

Hence, the number that is defined by the infimum, i.e., B(f),
satisfies the inequality (28), which shows that the infimum is
actually attained.

APPENDIX C
CRITICAL NYQUIST RATE AND SET OF UNIQUENESS

In Section III we have seen that Z is a set of uniqueness for
signals in Bpπ , 1 ≤ p <∞. Next, we will prove that this is in
general no longer true if the sampling rate is reduced below
the critical Nyquist rate. More specifically, we will show that
if we have a signal f ∈ Bpπ , 1 ≤ p < ∞, with B(f) = π,
i.e., a signal f ∈ Bpπ , 1 ≤ p < ∞, such that f 6∈ Bpσ for all
σ < π, then for all γ < π, f is not uniquely determined by
its samples {

f

(
kπ

γ

)}
k∈Z

,

that is, for all γ < π, there exists a signal gγ ∈ Bpπ such that

gγ

(
kπ

γ

)
= f

(
kπ

γ

)
, k ∈ Z,

and gγ 6= f .
We first prove the case 1 < p < ∞. Let f ∈ Bpπ , 1 < p <
∞, be such that f 6∈ Bpσ for all σ < π. We use an indirect
proof and assume that the assertion is wrong, i.e., we assume
that there exists a γ̂ < π such that the samples{

f

(
kπ

γ̂

)}
k∈Z

uniquely determine the signal f . Let l̂ be a natural number,
such that l̂γ̂ > π. Then we have f ∈ Bp

l̂γ̂
, and it follows from

the Plancherel–Pólya inequality that
∞∑

k=−∞

∣∣∣∣f (kπl̂γ̂
)∣∣∣∣p <∞. (30)

Since
∞∑

k=−∞

∣∣∣∣f (kπγ̂
)∣∣∣∣p

is a partial sum of the sum in (30), we obtain
∞∑

k=−∞

∣∣∣∣f (kπγ̂
)∣∣∣∣p < ∞∑

k=−∞

∣∣∣∣f (kπl̂γ̂
)∣∣∣∣p <∞.

Let

(ΓNf)(t) =
N∑

k=−N
f

(
kπ

γ̂

)
sin(γ̂(t− kπ

γ̂ ))

γ̂(t− kπ
γ̂ )

.

It follows from the Plancherel–Pólya inequality that
{ΓNf}N∈N is a Cauchy sequence in Bpγ̂ . Hence, there exists
a signal g ∈ Bpγ̂ with

g(t) = lim
N→∞

(ΓNf)(t) =
∞∑

k=−∞
f

(
kπ

γ̂

)
sin(γ̂(t− kπ

γ̂ ))

γ̂(t− kπ
γ̂ )

,

(31)
where the convergence is in the Bpγ̂-norm and consequently
also globally uniformly on the real axis. Since γ̂ < π, g is
also in Bpπ . Further, we see from (31) that

g

(
kπ

γ̂

)
= f

(
kπ

γ̂

)
, k ∈ Z,
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and it follows from our assumption that g ≡ f . Since g ∈ Bpγ̂ ,
this implies that f ∈ Bpγ̂ . However, this is a contradiction,
because f 6∈ Bpσ for all σ < π.

We now give the proof for p = 1. Let f ∈ B1π be such that
f 6∈ B1σ for all σ < π. We use an indirect proof and assume
that the assertion is wrong, i.e., we assume that there exists a
γ̂ < π such that the samples{

f

(
kπ

γ̂

)}
k∈Z

uniquely determine the signal f . Let κ be such that γ̂ < κ < π,
and let

g(t) =
∞∑

k=−∞
f

(
kπ

γ̂

)
K

(
t− kπ

γ̂

)
, (32)

where K ∈ B1κ is a kernel with cosine roll-of behavior in the
frequency domain, i.e.,

K̂(ω) =


1, |ω| ≤ (1− α)γ̂

cos2
[
π

4αγ̂ (|ω| − (1− α)γ̂)
]
,

(1− α)γ̂ ≤ |ω| ≤ (1 + α)γ̂

0, otherwise,

where 0 < α ≤ min{1, κ/γ̂−1}. Then K̂ and is concentrated
on the interval [−κ, κ], and we have

K

(
kπ

γ̂

)
=

{
1, k = 0,

0, k 6= 0.

Let l̂ be a natural number, such that l̂γ̂ > π. Then we have
f ∈ B1

l̂γ̂
. Note that the left inequality of the Plancherel–Pólya

inequality is also valid for p = 1 [18, Theorem 6.10, p. 50].
Thus, it follows from the Plancherel–Pólya inequality that

∞∑
k=−∞

∣∣∣∣f (kπl̂γ̂
)∣∣∣∣ <∞. (33)

Since
∞∑

k=−∞

∣∣∣∣f (kπγ̂
)∣∣∣∣

is a partial sum of the sum in (33), we obtain

∞∑
k=−∞

∣∣∣∣f (kπγ̂
)∣∣∣∣ < ∞∑

k=−∞

∣∣∣∣f (kπl̂γ̂
)∣∣∣∣ <∞.

Hence, it follows that the sequence in (32) converges in B1κ,
and we have g ∈ B1κ ⊂ B1π . Further, we see from (32) that

g

(
kπ

γ̂

)
= f

(
kπ

γ̂

)
, k ∈ Z,

and it follows from our assumption that g ≡ f . Since g ∈ B1κ,
this implies that f ∈ B1κ. However, this is a contradiction,
because f 6∈ B1σ for all σ < π.

APPENDIX D
AUXILIARY RESULT FOR THE PROOF OF THEOREM 1

Let al, l ∈ N, be the same numbers as defined in the proof
of Theorem 1. We show that

sin(al(t− l))
π(t− l)

(34)

is a computable function in B2π for all l ∈ N.
Let l ∈ N be arbitrary but fixed. For N ∈ N,

N∑
k=−N

sin(al(k − l))
π(k − l)

sin(π(t− k))

π(t− k)

is an elementary computable function in B2π , because the
coefficients {

sin(al(k − l))
π(k − l)

}N
k=−N

are computable numbers, which follows from the fact that sinc
is a computable continuous function [26]. Using Parseval’s
relation [18, p. 24], we see that∫ ∞
−∞

∣∣∣∣∣ sin(al(t− l))
π(t− l)

−
N∑

k=−N

sin(al(k − l))
π(k − l)

sin(π(t− k))

π(t− k)

∣∣∣∣∣
2

dt

=
∑
|k|>N

∣∣∣∣ sin(al(k − l))
π(k − l)

∣∣∣∣2 .
For N > l, we have∑

|k|>N

∣∣∣∣ sin(al(k − l))
π(k − l)

∣∣∣∣2 ≤ 2

π2

∞∑
k=N+1

1

(k − l)2

=
2

π2

∞∑
k=N−l+1

1

k2

<
2

π2

∫ ∞
N−l

1

τ2
dτ

=
2

π2(N − l)
.

This shows that{
N∑

k=−N

sin(al(k − l))
π(k − l)

sin(π(t− k))

π(t− k)

}
N∈N

converges effectively to (34) in the B2π-norm, which implies
that (34) is a computable function in B2π .

APPENDIX E
COMPUTABILITY OF gδ IN THE PROOF OF THEOREM 2

In this section we show that, for δ ∈ (0, π) ∩ Rc,

gδ(t) =
1

2π

∫ δ

−δ

(
1− |ω|

δ

)
eiωt dω

=
δ

2π

(
sin( δt2 )

δt
2

)2

, t ∈ R,
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is a computable function in B1π . We have

tgδ(t) =
2

δ
sin

(
δt

2

)
sin( δt2 )

πt

=
1

iδ

(
ei
δt
2 − e−i

δt
2

) sin( δt2 )

πt
.

Taking the Fourier transform, we obtain

iĝ′δ(ω) =
1

iδ

[
1[− δ2 , δ2 ]

(
ω − δ

2

)
− 1[− δ2 , δ2 ]

(
ω +

δ

2

)]
,

where 1A denotes the indicator function of the set A, and it
follows that

ĝ′δ(ω) =
1

δ

[
1[− δ2 , δ2 ]

(
ω +

δ

2

)
− 1[− δ2 , δ2 ]

(
ω − δ

2

)]
.

We see that ĝ′δ ∈ L∞[−π, π] and ĝ′δ(ω) = 0 for all |ω| > δ.
Let

ck(ĝ′δ) =
1

2π

∫ π

−π
ĝ′δ(ω) e−iωk dω, k ∈ Z,

and

(SN ĝ
′
δ)(ω) =

N∑
k=−N

ck(ĝ′δ) eiωk, N ∈ N.

We define

p̂N (ω) =

{∑N
k=−N gδ(k)

(
e−iωk− e−iπk

)
, |ω| ≤ π

0, |ω| > π.

Then we have

p̂N (ω) = (SN ĝδ)(ω)−
N∑

k=−N
gδ(k) e−iπk

for |ω| ≤ π, which corresponds to

pN (t) =
N∑

k=−N
gδ(k)

sin(π(t− k))

π(t− k)
−

N∑
k=−N

gδ(k) e−iπk
sin(πt)

πt

in the time domain. Thus, we see that {pN}N∈N is a com-
putable sequence of elementary computable functions in B1π .
We further have

p̂′N (ω) = (SN ĝδ)
′(ω) = (SN ĝ

′
δ)(ω),

and consequently,

t

i
(gδ(t)− pN (t)) =

1

2π

∫ π

−π
(ĝ′δ(ω)− p̂′N (ω)) eiωt dω

=
1

2π

∫ π

−π
(ĝ′δ(ω)− (SN ĝ

′
δ)(ω)) eiωt dω.

Applying Plancherel’s identity, we obtain∫ ∞
−∞

t2|gδ(t)−pN (t)|2 dt =
1

2π

∫ π

−π
|ĝ′δ(ω)−(SN ĝ

′
δ)(ω)|2 dω.

(35)
We call a function f ∈ L2[−π, π] computable if there exists
a computable sequence of trigonometric polynomials with
computable coefficients, that converges effectively to f in
the L2-norm. To show that ĝ′δ is a computable function in
L2[−π, π] it suffices to show that the indicator function is a
computable function in L2[−π, π]. This is indeed the case,

since the Fourier coefficients of the indicator function decay
as 1/k. Since, ĝ′δ is a computable function in L2[−π, π], it
follows that SN ĝ′δ converges to ĝ′δ effectively in L2[−π, π].
See Lemma 3 in Appendix G for details. From (35), we see
that

lim
N→∞

∫ ∞
−∞

t2|gδ(t)− pN (t)|2 dt = 0, (36)

where the convergence is effective in N . We have∫ ∞
1

|gδ(t)− pN (t)| dt =

∫ ∞
1

1

t
t|gδ(t)− pN (t)| dt

≤
(∫ ∞

1

1

t2
dt

) 1
2
(∫ ∞

1

t2|gδ(t)− pN (t)|2 dt

) 1
2

=

(∫ ∞
1

t2|gδ(t)− pN (t)|2 dt

) 1
2

, (37)

and, similarly,∫ −1
−∞
|gδ(t)− pN (t)| dt ≤

(∫ −1
−∞

t2|gδ(t)− pN (t)|2 dt

) 1
2

.

(38)

Further, we have∫ 1

−1
|gδ(t)− pN (t)| dt ≤ 2 max

|t|≤1
|gδ(t)− pN (t)|. (39)

Since

|gδ(t)− pN (t)| ≤ 1

2π

∫ π

−π
|ĝδ(ω)− p̂N (ω)| dω

≤
(

1

2π

∫ π

−π
|ĝδ(ω)− p̂N (ω)|2 dω

) 1
2

=

(
1

2π

∫ π

−π

∣∣∣∣ĝδ(ω)− (SN ĝδ)(ω) +
N∑

k=−N
gδ(k) e−iπk

∣∣∣∣2dω) 1
2

≤
(

1

2π

∫ π

−π
|ĝδ(ω)− (SN ĝδ)(ω)|2 dω

) 1
2

+

∣∣∣∣∣
N∑

k=−N
gδ(k) e−iπk

∣∣∣∣∣ ,
where the first term converges effectively to zero according
to Lemma 3 in Appendix G, and the second term converges
effectively to zero, because ĝδ(π) = 0 and∣∣∣∣∣ĝδ(π)−

N∑
k=−N

gδ(k) e−iπk
∣∣∣∣∣ ≤ ∑

|k|>N
|gδ(k)|

≤ 2

δπ

∑
|k|>N

1

k2

≤ 4

δπ

1

N
,

we see that

lim
N→∞

max
|t|≤1
|gδ(t)− pN (t)| = 0, (40)

where the convergence is effective in N . Combining (37)–(39)
and using (36) as well as (40), we obtain

lim
N→∞

∫ ∞
−∞
|gδ(t)− pN (t)| dt = 0,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2021.3057672

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INFORMATION THEORY 18

where the convergence is effective in N . Hence, {pN}N∈N
is a computable sequence of elementary computable functions
in B1π that converges effectively to gδ in the L1-norm. This
shows that gδ ∈ CB1π .

APPENDIX F
COMPUTABILITY OF g IN THE PROOF OF THEOREM 5

In this section we show that the function g in Theorem 5,
which was defined as

g(t) =

(
f( t2 )− f(0)

)2
t2

, t ∈ R,

is computable in B1π , i.e., that g ∈ CB1
π for all f ∈ CBpπ ,

p ∈ [1,∞) ∩ Rc, and all f ∈ CB∞π,0. We do the proof for
f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, here. The proof for f ∈ CB∞π,0
is done in an analogue way, when all occurrences of the Bpπ-
norm below are replaced by the B∞π -norm. Since f ∈ CBpπ ,
there exists a sequence {fn}n∈N of elementary computable
functions

fn(t) =

Mn∑
k=−Mn

ak(n)
sin(π(t− k))

π(t− k)
,

where Mn and ak(n) are computable functions with respect to
n, and a recursive function ξ : N→ N such that for all N ∈ N
we have

‖f − fn‖Bpπ ≤
1

2N
, (41)

for all n ≥ ξ(N). For n ∈ N, let

gn(t) =

(
fn( t2 )− fn(0)

)2
t2

, t ∈ R.

Next, we show that gn ∈ CB1π . We have

fn( t2 )− fn(0)

=

Mn∑
k=−Mn
k 6=0

ak(n)
sin(π( t2 − k))

π( t2 − k)
− a0(n)

(
1−

sin(π2 t)
π
2 t

)
,

and, consequently,

gn(t) =
(fn( t2 )− fn(0))2

t2

=
1

t2

(
Mn∑

k1=−Mn
k1 6=0

Mn∑
k2=−Mn
k2 6=0

ak1(n)ak2(n)×

×
sin(π( t2 − k1))

π( t2 − k1)

sin(π( t2 − k2))

π( t2 − k2)

− 2a0(n)

(
1−

sin(π2 t)
π
2 t

) Mn∑
k=−Mn
k 6=0

ak(n)
sin(π( t2 − k))

π( t2 − k)

+ (a0(n))2
(

1−
sin(π2 t)

π
2 t

)2
)
. (42)

We now show that the following three functions are in CB1
π:

1

t2
sin(π( t2 − k1))

π( t2 − k1)

sin(π( t2 − k2))

π( t2 − k2)
(43)

for k1, k2 ∈ Z \ {0},

1

t2

(
1−

sin(π2 t)
π
2 t

)
sin(π( t2 − k))

π( t2 − k)
(44)

for k ∈ Z \ {0}, and

1

t2

(
1−

sin(π2 t)
π
2 t

)2

. (45)

Since CB1
π is a linear subspace, it then follows that gn, which

is a finite linear combination of the functions (43)–(45), is in
CB1

π . We start with the analysis of (43) for k1, k2 ∈ Z \ {0}.
For convenience, we introduce the abbreviation

q(t, k2, k2) =
1

t2
sin(π( t2 − k1))

π( t2 − k1)

sin(π( t2 − k2))

π( t2 − k2)
.

We have
1

2π

∫ π

−π
q̂′′(ω, k1, k2) eiωt dω = −t2q(t, k1, k2)

= −
sin(π( t2 − k1))

π( t2 − k1)

sin(π( t2 − k2))

π( t2 − k2)
.

Since

sin(π2 (t− 2k1))
π
2 (t− 2k1)

=
1

2π

∫ π/2

−π/2
2 e−iω2k1 eiωt dω,

we see that

q̂′′(ω, k1, k2) = − 1

2π
(uk1 ∗ uk2)(ω)

where

ûl(ω) = 1[−π2 ,π2 ](ω)2 e−i2lω, l = k1, k2.

1A denotes the indicator function of the set A. We have

q̂′′(ω, k1, k2)

= − 2

π

∫ ∞
−∞

1[−π2 ,π2 ](ω1) e−i2k1ω1 ×

× 1[−π2 ,π2 ](ω − ω1) e−i2k2(ω−ω1) dω1

= − 2

π

∫ π/2

−π/2
e−i2k1ω1 1[−π2 ,π2 ](ω − ω1) e−i2k2(ω−ω1) dω1

= − 2

π

∫ ω+π/2

ω−π/2
e−i2k1(ω−ξ) 1[−π2 ,π2 ](ξ) e−i2k2ξ dξ

=

{
2
π

e−i(k1+k2)ω sin[(|ω|−π)(k2−k1)]
k2−k1 , |ω| ≤ π,

0, |ω| > π.

Hence, q̂′′( · , k1, k2) and consequently q̂′( · , k1, k2), are com-
putable continuous functions. For N ∈ N, we consider

ρ̂N (ω) =

{∑N
k=−N q(ω, k1, k2)(e−iωk − e−iπk), |ω| ≤ π,

0, |ω| > π.

Let

cr(q̂) =
1

2π

∫ π

−π
q̂(ω, k1k2) e−iωr dω, r ∈ Z,

and

(SN q̂)(ω) =

N∑
r=−N

cr(q̂) eiωr, N ∈ N.
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For |ω| < π, we have

ρ̂′N (ω) = (SN q̂)
′(ω) = (SN q̂

′)(ω). (46)

Further, we have ρ̂′N (ω) = 0 for |ω| > π. Hence, we see that
ρ̂′N ∈ L∞(R). It follows, using Plancherel’s theorem, that

1

2π

∫ π

−π
|ρ̂′N (ω)|2 dω =

∫ ∞
−∞
|itρN (t)|2 dt

=

∫ ∞
−∞

t2|ρN (t)|2 dt.

Due to the linearity of the Fourier transform, we obtain

1

2π

∫ π

−π
|q̂′(t, k1, k2)− (SN q̂

′)(ω)|2 dω

=
1

2π

∫ π

−π
|q̂′(t, k1, k2)− ρ̂′N (ω)|2 dω

=

∫ ∞
−∞

t2|q(t, k1, k2)− ρN (t)|2 dt, (47)

where we used (46) in the first equality. Since, q̂′( · , k1, k2)
is a computable continuous function it follows from Lemma 2
in Appendix G that q̂′( · , k1, k2) is a computable function in
L2[−π, π], and as a consequence of Lemma 3 in Appendix G,
that SN q̂′ converges to q̂′ effectively in L2[−π, π]. Thus, from
(47), we see that

lim
N→∞

∫ ∞
−∞

t2|q(t, k1, k2)− ρN (t)|2 dt = 0, (48)

where the convergence is effective in N . We have∫ ∞
1

|q(t, k1, k2)− ρN (t)| dt

=

∫ ∞
1

1

t
t|q(t, k1, k2)− ρN (t)| dt

≤
(∫ ∞

1

1

t2
dt

) 1
2
(∫ ∞

1

t2|q(t, k1, k2)− ρN (t)|2 dt

) 1
2

=

(∫ ∞
1

t2|q(t, k1, k2)− ρN (t)|2 dt

) 1
2

, (49)

and, similarly,∫ −1
−∞
|q(t, k1, k2)− ρN (t)| dt

≤
(∫ −1
−∞

t2|q(t, k1, k2)− ρN (t)|2 dt

) 1
2

, (50)

Further, we have∫ 1

−1
|q(t, k1, k2)− ρN (t)| dt ≤ 2 max

|t|≤1
|q(t, k1, k2)− ρN (t)|

(51)

and, by the same calculation as in Appendix E,

lim
N→∞

max
|t|≤1
|q(t, k1, k2)− ρN (t)| = 0, (52)

where the convergence is effective in N . Combining (49)–(51)
and using (48) as well as (52), we obtain

lim
N→∞

∫ ∞
−∞
|q(t, k1, k2)− ρN (t)| dt = 0,

where the convergence is effective in N . Since

ρN (t) =
N∑

r=−N
q(r, k1, k2)

sin(π(t− r))
π(t− r)

−
N∑

r=−N
q(r, k1, k2) e−iπr

sin(πt)

πt
,

we see that {ρN}N∈Z is a computable sequence of elementary
computable functions in B1π that converges effectively to q in
the L1-norm. Hence, we have q ∈ CB1π . The functions (44) and
(45) are treated similarly. The exact calculations are omitted
due to space constraints. It follows that gn ∈ CB1π for all
n ∈ N. Next, we show the effective convergence of gn to g
in the L1-norm. To this end, we treat both integrals on the
right-hand side of∫ ∞
−∞
|g(t)− gn(t)| dt

=

∫
|t|≤1
|g(t)− gn(t)| dt+

∫
|t|>1

|g(t)− gn(t)| dt (53)

separately.
We start with the second integral. We have∫ ∞
1

|g(t)− gn(t)| dt

=

∫ ∞
1

∣∣∣∣ (f( t2 )− f(0))2

t2
−

(fn( t2 )− fn(0))2

t2

∣∣∣∣ dt

≤ max
t∈R
|(f( t2 )− f(0))2 − (fn( t2 )− fn(0))2|

∫ ∞
1

1

t2
dt

= max
t∈R
|(f( t2 )− f(0))2 − (fn( t2 )− fn(0))2| (54)

and

|(f( t2 )− f(0))2 − (fn( t2 )− fn(0))2|
= |(f( t2 ))2 − (fn( t2 ))2 − (fn(0))2 + (f(0))2

− 2f( t2 )f(0) + 2fn( t2 )fn(0)|
≤ |(f( t2 ))2 − (fn( t2 ))2|+ |(f(0))2 − (fn(0))2|

+ 2|f( t2 )f(0)− fn( t2 )fn(0)|. (55)

For the first summand in (55), we obtain

|(f( t2 ))2 − (fn( t2 ))2|
= |(f( t2 )− fn( t2 ))(f( t2 ) + fn( t2 ))|
≤ |f( t2 )− fn( t2 )| · |f( t2 ) + fn( t2 )|
≤ |f( t2 )− fn( t2 )| (‖f‖∞ + ‖fn‖∞)

≤ ‖f − fn‖∞ (‖f‖∞ + ‖fn‖∞) .

Since ‖f‖∞ and ‖fn‖∞ are computable numbers, there exists
a computable number N0 such that∣∣‖f‖∞ − ‖fn‖∞∣∣ < 1

2

for all n ≥ N0. It follows that

‖fn‖∞ < ‖f‖∞ +
1

2

for all n ≥ N0. Hence, we see that

|(f( t2 ))2 − (fn( t2 ))2| ≤ C1‖f − fn‖∞ (56)
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Fig. 3. Contour L1 in the complex plane.

for all n ≥ N0, where

C1 = 2‖f‖∞ +
1

2

is a computable constant. Using the same calculation, we
obtain for the second summand in (55) that

|(f(0))2 − (fn(0))2| ≤ C1‖f − fn‖∞ (57)

for all n ≥ N0, For the third summand, we have

|f( t2 )f(0)− fn( t2 )fn(0)|
= |f( t2 )f(0)− fn( t2 )f(0) + fn( t2 )f(0)− fn( t2 )fn(0)|
≤ |f(0)| · |f( t2 )− fn( t2 )|+ |fn( t2 )| · |f(0)− fn(0)|
≤ ‖f‖∞ · ‖f − fn‖∞ + ‖fn‖∞ · ‖f − fn‖∞
≤ C1‖f − fn‖∞ (58)

for all n ≥ N0. Combining (54)–(58), it follows that∫
|t|≥1
|g(t)− gn(t)| dt = 2

∫ ∞
1

|g(t)− gn(t)| dt

≤ 8C1‖f − fn‖∞
≤ 8C1‖f − fn‖Bpπ ,

and, using (41), that∫
|t|≥1
|g(t)− gn(t)| dt ≤ 8C1

2N

for all n ≥ max{ξ(N), N0}.
Next, we treat the first integral in (53). For all h ∈ B∞π,0 we

have, as a consequence of the Phragmén–Lindelöf principle,
the inequality

|h( z2 )| ≤ ‖h‖∞ e
π
2 y0

for all z = x + iy with |y| ≤ y0 [35, Remark 2, p. 38], [56,
Theorem 11, p. 82]. Hence, it follows that

|f( z2 )− fn( z2 )| ≤ ‖f − fn‖∞ e
π
2 y0

for all z = x + iy with |y| ≤ y0. Let L1 be the contour that
is depicted in Fig. 3, and let t ∈ [−1, 1]. Then, according to
Cauchy’s integral formula [18, p. 91], we have

|g(t)− gn(t)| =
∣∣∣∣ 1

2π

∮
L1

g(z)− gn(z)

z − t
dz

∣∣∣∣
≤ max
z∈L1

|g(z)− gn(z)| 1

2π

∮
L1

1

|z − t|
|dz|.

Since |z − t| ≥ 1 for all z ∈ L1, it follows that∮
L1

1

|z − t|
|dz| ≤ 12.

Thus, we obtain

|g(t)− gn(t)| ≤ 6

π
max
z∈L1

|g(z)− gn(z)|.

For z ∈ L1 we have, using a similar calculation as before, that

|g(z)− gn(z)| = 1

|z|2
∣∣(f( z2 )− f(0))2 − (fn( z2 )− fn(0))2

∣∣
≤
∣∣(f( z2 )− f(0))2 − (fn( z2 )− fn(0))2

∣∣
≤ eπ‖f − fn‖2∞ + ‖f − fn‖2∞

+ 2C1 e
π
2 ‖f − fn‖∞

≤ (1 + eπ)‖f − fn‖2Bpπ + 2C1 e
π
2 ‖f − fn‖Bpπ

for all n ≥ N0. Hence, we have∫ 1

−1
|g(t)− gn(t)| dt ≤ 2 max

t∈[−1,1]
|g(t)− gn(t)|

≤ 12

π

[
(1 + eπ)‖f − fn‖2Bpπ + 2C1 e

π
2 ‖f − fn‖Bpπ

]
for all n ≥ N0. It follows that∫ 1

−1
|g(t)− gn(t)| dt ≤ 12

π

[
(1 + eπ)

1

22N
+ 2C1 e

π
2

1

2N

]
≤ C2

1

2N

for all n ≥ max{ξ(N), N0}, where

C2 =
12

π

[
(1 + eπ) + 2C1 e

π
2

]
is a computable constant. Finally, we see that for all N ∈ N
we have ∫ ∞

−∞
|g(t)− gn(t)| dt ≤ C3

1

2N

for all n ≥ max{ξ(N), N0}, where C3 = 8C1 + C2 is a
computable constant. Thus, it follows that {gn}n∈N converges
effectively to g in the L1-norm, and consequently that g is
computable in B1π .

APPENDIX G
COMPUTABILITY OF FOURIER SERIES

In this section we give a result about the L2-convergence
of the Fourier series for computable continuous 2π-periodic
functions.

The following lemma is obvious, nevertheless its proof is
included for completeness.

Lemma 2. Let f be a computable continuous 2π-periodic
function. Then f is a computable function in L2[−π, π].

Proof. Let f be an arbitrary computable continuous 2π-
periodic function. Since f is a computable continuous 2π-
periodic function, there exists a computable sequence of com-
putable trigonometric polynomials {pN}N∈N that effectively
approximates f [26], i.e., we have

lim
N→∞

max
ω∈[−π,π]

|f(ω)− pN (ω)| = 0,
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where the convergence is effective. Since

‖f − pN‖L2[−π,π] =

(
1

2π

∫ π

−π
|f(ω)− pN (ω)|2 dω

) 1
2

≤ max
ω∈[−π,π]

|f(ω)− pN (ω)|,

it follows that f is computable in L2[−π, π].

For N ∈ N, let

(SNf)(ω) =
N∑

k=−N
ck(f) eiωk,

where
ck(f) =

1

2π

∫ π

−π
f(ω) e−iωk dω.

Lemma 3. Let f be a computable function in L2[−π, π]. Then

1

2π

∫ π

−π
|f(ω)− (SNf)(ω)|2 dω

converges effectively to zero as N tends to infinity.

Proof. Let f be an arbitrary computable function in
L2[−π, π]. Then we have

‖f‖2L2[−π,π] =
1

2π

∫ π

−π
|f(ω)|2 dω ∈ Rc.

Since
N∑

k=−N
|ck(f)|2 =

1

2π

∫ π

−π
|(SNf)(ω)|2 dω,

it follows that

lim
N→∞

N∑
k=−N

|ck(f)|2 = ‖f‖2L2[−π,π] ∈ Rc.

Hence {
N∑

k=−N
|ck(f)|2

}
N∈N

is a monotonically increasing computable sequence of com-
putable numbers that converges to a computable number. Thus
the convergence has to be effective [26, p. 20, Corollary 2a].
As a consequence

1

2π

∫ π

−π
|f(ω)− (SNf)(ω)|2 dω =

∑
|k|>N

|ck(f)|2

converges effectively to zero as N tends to infinity.
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